Loading…

Non-silicon MEMS platforms for gas sensors

The target of this work is the demonstration of advanced approaches able to provide non-silicon MEMS platforms for chemical sensor operating under harsh environmental conditions and, on the other hand, to assure microhotplate stable at high temperature, which can be used for the deposition of refrac...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2016-03, Vol.224, p.700-713
Main Authors: Vasiliev, A.A., Pisliakov, A.V., Sokolov, A.V., Samotaev, N.N., Soloviev, S.A., Oblov, K., Guarnieri, V., Lorenzelli, L., Brunelli, J., Maglione, A., Lipilin, A.S., Mozalev, A., Legin, A.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3
cites cdi_FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3
container_end_page 713
container_issue
container_start_page 700
container_title Sensors and actuators. B, Chemical
container_volume 224
creator Vasiliev, A.A.
Pisliakov, A.V.
Sokolov, A.V.
Samotaev, N.N.
Soloviev, S.A.
Oblov, K.
Guarnieri, V.
Lorenzelli, L.
Brunelli, J.
Maglione, A.
Lipilin, A.S.
Mozalev, A.
Legin, A.V.
description The target of this work is the demonstration of advanced approaches able to provide non-silicon MEMS platforms for chemical sensor operating under harsh environmental conditions and, on the other hand, to assure microhotplate stable at high temperature, which can be used for the deposition of refractory gas-sensing materials, for example, oxides of gallium, zirconium, or hafnium. Non-silicon materials that can be used for these MEMS platforms include aluminum oxide, yttria-stabilized zirconia and thin borosilicate glass. It was shown that thin ceramic films made of oxide materials can withstand annealing temperature up to 1000°C, MEMS sensor based on these films consumes
doi_str_mv 10.1016/j.snb.2015.10.066
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786220870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400515305323</els_id><sourcerecordid>1786220870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4G2PIuw6SXazu3iS0qrQ6kE9h2w6kZTtpma2gm9vSj17mWGG_xuYj7FrDgUHru42BQ1dIYBXaS5AqRM24U0tcwl1fcom0IoqLwGqc3ZBtAGAUiqYsNuXMOTke2_DkK3mq7ds15vRhbilLNXs01BGOFCIdMnOnOkJr_76lH0s5u-zp3z5-vg8e1jmVkoYc9fUjqvWdC3YRiBIVzkBrkPeNs4Kq7CrDMhSCVMK3ionuCxb0VZWlqazazllN8e7uxi-9kij3nqy2PdmwLAnzetGCQFNDSnKj1EbA1FEp3fRb0380Rz0wYve6ORFH7wcVslLYu6PDKYfvj1GTdbjYHHtI9pRr4P_h_4Fd3BpRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786220870</pqid></control><display><type>article</type><title>Non-silicon MEMS platforms for gas sensors</title><source>ScienceDirect Freedom Collection</source><creator>Vasiliev, A.A. ; Pisliakov, A.V. ; Sokolov, A.V. ; Samotaev, N.N. ; Soloviev, S.A. ; Oblov, K. ; Guarnieri, V. ; Lorenzelli, L. ; Brunelli, J. ; Maglione, A. ; Lipilin, A.S. ; Mozalev, A. ; Legin, A.V.</creator><creatorcontrib>Vasiliev, A.A. ; Pisliakov, A.V. ; Sokolov, A.V. ; Samotaev, N.N. ; Soloviev, S.A. ; Oblov, K. ; Guarnieri, V. ; Lorenzelli, L. ; Brunelli, J. ; Maglione, A. ; Lipilin, A.S. ; Mozalev, A. ; Legin, A.V.</creatorcontrib><description>The target of this work is the demonstration of advanced approaches able to provide non-silicon MEMS platforms for chemical sensor operating under harsh environmental conditions and, on the other hand, to assure microhotplate stable at high temperature, which can be used for the deposition of refractory gas-sensing materials, for example, oxides of gallium, zirconium, or hafnium. Non-silicon materials that can be used for these MEMS platforms include aluminum oxide, yttria-stabilized zirconia and thin borosilicate glass. It was shown that thin ceramic films made of oxide materials can withstand annealing temperature up to 1000°C, MEMS sensor based on these films consumes &lt;70mW at continuous heating at 450°C and ∼1mW in pulsed heating operation mode. Ceramic MEMS show higher stability at high temperature compared to silicon technology based MEMS, whereas power consumption of both types of devices is comparable.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2015.10.066</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aluminum oxide ; Ceramic MEMS ; Ceramics ; Gas sensors ; Heating ; Microelectromechanical systems ; Microhotplates ; Oxides ; Platforms ; Sensors ; Yttria stabilized zirconia</subject><ispartof>Sensors and actuators. B, Chemical, 2016-03, Vol.224, p.700-713</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3</citedby><cites>FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Vasiliev, A.A.</creatorcontrib><creatorcontrib>Pisliakov, A.V.</creatorcontrib><creatorcontrib>Sokolov, A.V.</creatorcontrib><creatorcontrib>Samotaev, N.N.</creatorcontrib><creatorcontrib>Soloviev, S.A.</creatorcontrib><creatorcontrib>Oblov, K.</creatorcontrib><creatorcontrib>Guarnieri, V.</creatorcontrib><creatorcontrib>Lorenzelli, L.</creatorcontrib><creatorcontrib>Brunelli, J.</creatorcontrib><creatorcontrib>Maglione, A.</creatorcontrib><creatorcontrib>Lipilin, A.S.</creatorcontrib><creatorcontrib>Mozalev, A.</creatorcontrib><creatorcontrib>Legin, A.V.</creatorcontrib><title>Non-silicon MEMS platforms for gas sensors</title><title>Sensors and actuators. B, Chemical</title><description>The target of this work is the demonstration of advanced approaches able to provide non-silicon MEMS platforms for chemical sensor operating under harsh environmental conditions and, on the other hand, to assure microhotplate stable at high temperature, which can be used for the deposition of refractory gas-sensing materials, for example, oxides of gallium, zirconium, or hafnium. Non-silicon materials that can be used for these MEMS platforms include aluminum oxide, yttria-stabilized zirconia and thin borosilicate glass. It was shown that thin ceramic films made of oxide materials can withstand annealing temperature up to 1000°C, MEMS sensor based on these films consumes &lt;70mW at continuous heating at 450°C and ∼1mW in pulsed heating operation mode. Ceramic MEMS show higher stability at high temperature compared to silicon technology based MEMS, whereas power consumption of both types of devices is comparable.</description><subject>Aluminum oxide</subject><subject>Ceramic MEMS</subject><subject>Ceramics</subject><subject>Gas sensors</subject><subject>Heating</subject><subject>Microelectromechanical systems</subject><subject>Microhotplates</subject><subject>Oxides</subject><subject>Platforms</subject><subject>Sensors</subject><subject>Yttria stabilized zirconia</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4G2PIuw6SXazu3iS0qrQ6kE9h2w6kZTtpma2gm9vSj17mWGG_xuYj7FrDgUHru42BQ1dIYBXaS5AqRM24U0tcwl1fcom0IoqLwGqc3ZBtAGAUiqYsNuXMOTke2_DkK3mq7ds15vRhbilLNXs01BGOFCIdMnOnOkJr_76lH0s5u-zp3z5-vg8e1jmVkoYc9fUjqvWdC3YRiBIVzkBrkPeNs4Kq7CrDMhSCVMK3ionuCxb0VZWlqazazllN8e7uxi-9kij3nqy2PdmwLAnzetGCQFNDSnKj1EbA1FEp3fRb0380Rz0wYve6ORFH7wcVslLYu6PDKYfvj1GTdbjYHHtI9pRr4P_h_4Fd3BpRQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Vasiliev, A.A.</creator><creator>Pisliakov, A.V.</creator><creator>Sokolov, A.V.</creator><creator>Samotaev, N.N.</creator><creator>Soloviev, S.A.</creator><creator>Oblov, K.</creator><creator>Guarnieri, V.</creator><creator>Lorenzelli, L.</creator><creator>Brunelli, J.</creator><creator>Maglione, A.</creator><creator>Lipilin, A.S.</creator><creator>Mozalev, A.</creator><creator>Legin, A.V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Non-silicon MEMS platforms for gas sensors</title><author>Vasiliev, A.A. ; Pisliakov, A.V. ; Sokolov, A.V. ; Samotaev, N.N. ; Soloviev, S.A. ; Oblov, K. ; Guarnieri, V. ; Lorenzelli, L. ; Brunelli, J. ; Maglione, A. ; Lipilin, A.S. ; Mozalev, A. ; Legin, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum oxide</topic><topic>Ceramic MEMS</topic><topic>Ceramics</topic><topic>Gas sensors</topic><topic>Heating</topic><topic>Microelectromechanical systems</topic><topic>Microhotplates</topic><topic>Oxides</topic><topic>Platforms</topic><topic>Sensors</topic><topic>Yttria stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasiliev, A.A.</creatorcontrib><creatorcontrib>Pisliakov, A.V.</creatorcontrib><creatorcontrib>Sokolov, A.V.</creatorcontrib><creatorcontrib>Samotaev, N.N.</creatorcontrib><creatorcontrib>Soloviev, S.A.</creatorcontrib><creatorcontrib>Oblov, K.</creatorcontrib><creatorcontrib>Guarnieri, V.</creatorcontrib><creatorcontrib>Lorenzelli, L.</creatorcontrib><creatorcontrib>Brunelli, J.</creatorcontrib><creatorcontrib>Maglione, A.</creatorcontrib><creatorcontrib>Lipilin, A.S.</creatorcontrib><creatorcontrib>Mozalev, A.</creatorcontrib><creatorcontrib>Legin, A.V.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasiliev, A.A.</au><au>Pisliakov, A.V.</au><au>Sokolov, A.V.</au><au>Samotaev, N.N.</au><au>Soloviev, S.A.</au><au>Oblov, K.</au><au>Guarnieri, V.</au><au>Lorenzelli, L.</au><au>Brunelli, J.</au><au>Maglione, A.</au><au>Lipilin, A.S.</au><au>Mozalev, A.</au><au>Legin, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-silicon MEMS platforms for gas sensors</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>224</volume><spage>700</spage><epage>713</epage><pages>700-713</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>The target of this work is the demonstration of advanced approaches able to provide non-silicon MEMS platforms for chemical sensor operating under harsh environmental conditions and, on the other hand, to assure microhotplate stable at high temperature, which can be used for the deposition of refractory gas-sensing materials, for example, oxides of gallium, zirconium, or hafnium. Non-silicon materials that can be used for these MEMS platforms include aluminum oxide, yttria-stabilized zirconia and thin borosilicate glass. It was shown that thin ceramic films made of oxide materials can withstand annealing temperature up to 1000°C, MEMS sensor based on these films consumes &lt;70mW at continuous heating at 450°C and ∼1mW in pulsed heating operation mode. Ceramic MEMS show higher stability at high temperature compared to silicon technology based MEMS, whereas power consumption of both types of devices is comparable.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2015.10.066</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2016-03, Vol.224, p.700-713
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1786220870
source ScienceDirect Freedom Collection
subjects Aluminum oxide
Ceramic MEMS
Ceramics
Gas sensors
Heating
Microelectromechanical systems
Microhotplates
Oxides
Platforms
Sensors
Yttria stabilized zirconia
title Non-silicon MEMS platforms for gas sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-silicon%20MEMS%20platforms%20for%20gas%20sensors&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Vasiliev,%20A.A.&rft.date=2016-03-01&rft.volume=224&rft.spage=700&rft.epage=713&rft.pages=700-713&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2015.10.066&rft_dat=%3Cproquest_cross%3E1786220870%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786220870&rft_id=info:pmid/&rfr_iscdi=true