Loading…
Non-silicon MEMS platforms for gas sensors
The target of this work is the demonstration of advanced approaches able to provide non-silicon MEMS platforms for chemical sensor operating under harsh environmental conditions and, on the other hand, to assure microhotplate stable at high temperature, which can be used for the deposition of refrac...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 2016-03, Vol.224, p.700-713 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3 |
container_end_page | 713 |
container_issue | |
container_start_page | 700 |
container_title | Sensors and actuators. B, Chemical |
container_volume | 224 |
creator | Vasiliev, A.A. Pisliakov, A.V. Sokolov, A.V. Samotaev, N.N. Soloviev, S.A. Oblov, K. Guarnieri, V. Lorenzelli, L. Brunelli, J. Maglione, A. Lipilin, A.S. Mozalev, A. Legin, A.V. |
description | The target of this work is the demonstration of advanced approaches able to provide non-silicon MEMS platforms for chemical sensor operating under harsh environmental conditions and, on the other hand, to assure microhotplate stable at high temperature, which can be used for the deposition of refractory gas-sensing materials, for example, oxides of gallium, zirconium, or hafnium. Non-silicon materials that can be used for these MEMS platforms include aluminum oxide, yttria-stabilized zirconia and thin borosilicate glass. It was shown that thin ceramic films made of oxide materials can withstand annealing temperature up to 1000°C, MEMS sensor based on these films consumes |
doi_str_mv | 10.1016/j.snb.2015.10.066 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786220870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400515305323</els_id><sourcerecordid>1786220870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4G2PIuw6SXazu3iS0qrQ6kE9h2w6kZTtpma2gm9vSj17mWGG_xuYj7FrDgUHru42BQ1dIYBXaS5AqRM24U0tcwl1fcom0IoqLwGqc3ZBtAGAUiqYsNuXMOTke2_DkK3mq7ds15vRhbilLNXs01BGOFCIdMnOnOkJr_76lH0s5u-zp3z5-vg8e1jmVkoYc9fUjqvWdC3YRiBIVzkBrkPeNs4Kq7CrDMhSCVMK3ionuCxb0VZWlqazazllN8e7uxi-9kij3nqy2PdmwLAnzetGCQFNDSnKj1EbA1FEp3fRb0380Rz0wYve6ORFH7wcVslLYu6PDKYfvj1GTdbjYHHtI9pRr4P_h_4Fd3BpRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786220870</pqid></control><display><type>article</type><title>Non-silicon MEMS platforms for gas sensors</title><source>ScienceDirect Freedom Collection</source><creator>Vasiliev, A.A. ; Pisliakov, A.V. ; Sokolov, A.V. ; Samotaev, N.N. ; Soloviev, S.A. ; Oblov, K. ; Guarnieri, V. ; Lorenzelli, L. ; Brunelli, J. ; Maglione, A. ; Lipilin, A.S. ; Mozalev, A. ; Legin, A.V.</creator><creatorcontrib>Vasiliev, A.A. ; Pisliakov, A.V. ; Sokolov, A.V. ; Samotaev, N.N. ; Soloviev, S.A. ; Oblov, K. ; Guarnieri, V. ; Lorenzelli, L. ; Brunelli, J. ; Maglione, A. ; Lipilin, A.S. ; Mozalev, A. ; Legin, A.V.</creatorcontrib><description>The target of this work is the demonstration of advanced approaches able to provide non-silicon MEMS platforms for chemical sensor operating under harsh environmental conditions and, on the other hand, to assure microhotplate stable at high temperature, which can be used for the deposition of refractory gas-sensing materials, for example, oxides of gallium, zirconium, or hafnium. Non-silicon materials that can be used for these MEMS platforms include aluminum oxide, yttria-stabilized zirconia and thin borosilicate glass. It was shown that thin ceramic films made of oxide materials can withstand annealing temperature up to 1000°C, MEMS sensor based on these films consumes <70mW at continuous heating at 450°C and ∼1mW in pulsed heating operation mode. Ceramic MEMS show higher stability at high temperature compared to silicon technology based MEMS, whereas power consumption of both types of devices is comparable.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2015.10.066</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aluminum oxide ; Ceramic MEMS ; Ceramics ; Gas sensors ; Heating ; Microelectromechanical systems ; Microhotplates ; Oxides ; Platforms ; Sensors ; Yttria stabilized zirconia</subject><ispartof>Sensors and actuators. B, Chemical, 2016-03, Vol.224, p.700-713</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3</citedby><cites>FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Vasiliev, A.A.</creatorcontrib><creatorcontrib>Pisliakov, A.V.</creatorcontrib><creatorcontrib>Sokolov, A.V.</creatorcontrib><creatorcontrib>Samotaev, N.N.</creatorcontrib><creatorcontrib>Soloviev, S.A.</creatorcontrib><creatorcontrib>Oblov, K.</creatorcontrib><creatorcontrib>Guarnieri, V.</creatorcontrib><creatorcontrib>Lorenzelli, L.</creatorcontrib><creatorcontrib>Brunelli, J.</creatorcontrib><creatorcontrib>Maglione, A.</creatorcontrib><creatorcontrib>Lipilin, A.S.</creatorcontrib><creatorcontrib>Mozalev, A.</creatorcontrib><creatorcontrib>Legin, A.V.</creatorcontrib><title>Non-silicon MEMS platforms for gas sensors</title><title>Sensors and actuators. B, Chemical</title><description>The target of this work is the demonstration of advanced approaches able to provide non-silicon MEMS platforms for chemical sensor operating under harsh environmental conditions and, on the other hand, to assure microhotplate stable at high temperature, which can be used for the deposition of refractory gas-sensing materials, for example, oxides of gallium, zirconium, or hafnium. Non-silicon materials that can be used for these MEMS platforms include aluminum oxide, yttria-stabilized zirconia and thin borosilicate glass. It was shown that thin ceramic films made of oxide materials can withstand annealing temperature up to 1000°C, MEMS sensor based on these films consumes <70mW at continuous heating at 450°C and ∼1mW in pulsed heating operation mode. Ceramic MEMS show higher stability at high temperature compared to silicon technology based MEMS, whereas power consumption of both types of devices is comparable.</description><subject>Aluminum oxide</subject><subject>Ceramic MEMS</subject><subject>Ceramics</subject><subject>Gas sensors</subject><subject>Heating</subject><subject>Microelectromechanical systems</subject><subject>Microhotplates</subject><subject>Oxides</subject><subject>Platforms</subject><subject>Sensors</subject><subject>Yttria stabilized zirconia</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4G2PIuw6SXazu3iS0qrQ6kE9h2w6kZTtpma2gm9vSj17mWGG_xuYj7FrDgUHru42BQ1dIYBXaS5AqRM24U0tcwl1fcom0IoqLwGqc3ZBtAGAUiqYsNuXMOTke2_DkK3mq7ds15vRhbilLNXs01BGOFCIdMnOnOkJr_76lH0s5u-zp3z5-vg8e1jmVkoYc9fUjqvWdC3YRiBIVzkBrkPeNs4Kq7CrDMhSCVMK3ionuCxb0VZWlqazazllN8e7uxi-9kij3nqy2PdmwLAnzetGCQFNDSnKj1EbA1FEp3fRb0380Rz0wYve6ORFH7wcVslLYu6PDKYfvj1GTdbjYHHtI9pRr4P_h_4Fd3BpRQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Vasiliev, A.A.</creator><creator>Pisliakov, A.V.</creator><creator>Sokolov, A.V.</creator><creator>Samotaev, N.N.</creator><creator>Soloviev, S.A.</creator><creator>Oblov, K.</creator><creator>Guarnieri, V.</creator><creator>Lorenzelli, L.</creator><creator>Brunelli, J.</creator><creator>Maglione, A.</creator><creator>Lipilin, A.S.</creator><creator>Mozalev, A.</creator><creator>Legin, A.V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Non-silicon MEMS platforms for gas sensors</title><author>Vasiliev, A.A. ; Pisliakov, A.V. ; Sokolov, A.V. ; Samotaev, N.N. ; Soloviev, S.A. ; Oblov, K. ; Guarnieri, V. ; Lorenzelli, L. ; Brunelli, J. ; Maglione, A. ; Lipilin, A.S. ; Mozalev, A. ; Legin, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum oxide</topic><topic>Ceramic MEMS</topic><topic>Ceramics</topic><topic>Gas sensors</topic><topic>Heating</topic><topic>Microelectromechanical systems</topic><topic>Microhotplates</topic><topic>Oxides</topic><topic>Platforms</topic><topic>Sensors</topic><topic>Yttria stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasiliev, A.A.</creatorcontrib><creatorcontrib>Pisliakov, A.V.</creatorcontrib><creatorcontrib>Sokolov, A.V.</creatorcontrib><creatorcontrib>Samotaev, N.N.</creatorcontrib><creatorcontrib>Soloviev, S.A.</creatorcontrib><creatorcontrib>Oblov, K.</creatorcontrib><creatorcontrib>Guarnieri, V.</creatorcontrib><creatorcontrib>Lorenzelli, L.</creatorcontrib><creatorcontrib>Brunelli, J.</creatorcontrib><creatorcontrib>Maglione, A.</creatorcontrib><creatorcontrib>Lipilin, A.S.</creatorcontrib><creatorcontrib>Mozalev, A.</creatorcontrib><creatorcontrib>Legin, A.V.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasiliev, A.A.</au><au>Pisliakov, A.V.</au><au>Sokolov, A.V.</au><au>Samotaev, N.N.</au><au>Soloviev, S.A.</au><au>Oblov, K.</au><au>Guarnieri, V.</au><au>Lorenzelli, L.</au><au>Brunelli, J.</au><au>Maglione, A.</au><au>Lipilin, A.S.</au><au>Mozalev, A.</au><au>Legin, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-silicon MEMS platforms for gas sensors</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>224</volume><spage>700</spage><epage>713</epage><pages>700-713</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>The target of this work is the demonstration of advanced approaches able to provide non-silicon MEMS platforms for chemical sensor operating under harsh environmental conditions and, on the other hand, to assure microhotplate stable at high temperature, which can be used for the deposition of refractory gas-sensing materials, for example, oxides of gallium, zirconium, or hafnium. Non-silicon materials that can be used for these MEMS platforms include aluminum oxide, yttria-stabilized zirconia and thin borosilicate glass. It was shown that thin ceramic films made of oxide materials can withstand annealing temperature up to 1000°C, MEMS sensor based on these films consumes <70mW at continuous heating at 450°C and ∼1mW in pulsed heating operation mode. Ceramic MEMS show higher stability at high temperature compared to silicon technology based MEMS, whereas power consumption of both types of devices is comparable.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2015.10.066</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4005 |
ispartof | Sensors and actuators. B, Chemical, 2016-03, Vol.224, p.700-713 |
issn | 0925-4005 1873-3077 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786220870 |
source | ScienceDirect Freedom Collection |
subjects | Aluminum oxide Ceramic MEMS Ceramics Gas sensors Heating Microelectromechanical systems Microhotplates Oxides Platforms Sensors Yttria stabilized zirconia |
title | Non-silicon MEMS platforms for gas sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-silicon%20MEMS%20platforms%20for%20gas%20sensors&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Vasiliev,%20A.A.&rft.date=2016-03-01&rft.volume=224&rft.spage=700&rft.epage=713&rft.pages=700-713&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2015.10.066&rft_dat=%3Cproquest_cross%3E1786220870%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-f87f169ab90c82e03f5f20fbe198fc2c6eb5a03462a42196f21349295c34abcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786220870&rft_id=info:pmid/&rfr_iscdi=true |