Loading…

Computational imaging with a highly parallel image-plane-coded architecture: challenges and solutions

This paper investigates a highly parallel extension of the single-pixel camera based on a focal plane array. It discusses the practical challenges that arise when implementing such an architecture and demonstrates that system-specific optical effects must be measured and integrated within the system...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2016-03, Vol.24 (6), p.6145-6155
Main Authors: Dumas, John P, Lodhi, Muhammad A, Bajwa, Waheed U, Pierce, Mark C
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates a highly parallel extension of the single-pixel camera based on a focal plane array. It discusses the practical challenges that arise when implementing such an architecture and demonstrates that system-specific optical effects must be measured and integrated within the system model for accurate image reconstruction. Three different projection lenses were used to evaluate the ability of the system to accommodate varying degrees of optical imperfection. Reconstruction of binary and grayscale objects using system-specific models and Nesterov's proximal gradient method produced images with higher spatial resolution and lower reconstruction error than using either bicubic interpolation or a theoretical system model that assumes ideal optical behavior. The high-quality images produced using relatively few observations suggest that higher throughput imaging may be achieved with such architectures than with conventional single-pixel cameras. The optical design considerations and quantitative performance metrics proposed here may lead to improved image reconstruction for similar highly parallel systems.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.24.006145