Loading…

Chimeralike states in a network of oscillators under attractive and repulsive global coupling

We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the inc...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-12, Vol.92 (6), p.062920-062920, Article 062920
Main Authors: Mishra, Arindam, Hens, Chittaranjan, Bose, Mridul, Roy, Prodyot K, Dana, Syamal K
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-8b84a8bfb5b22f922cd0f27a2fce57515a48ccdad67f49293f2d1c18ab1ff0a53
cites cdi_FETCH-LOGICAL-c369t-8b84a8bfb5b22f922cd0f27a2fce57515a48ccdad67f49293f2d1c18ab1ff0a53
container_end_page 062920
container_issue 6
container_start_page 062920
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 92
creator Mishra, Arindam
Hens, Chittaranjan
Bose, Mridul
Roy, Prodyot K
Dana, Syamal K
description We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.
doi_str_mv 10.1103/PhysRevE.92.062920
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787470841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787470841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-8b84a8bfb5b22f922cd0f27a2fce57515a48ccdad67f49293f2d1c18ab1ff0a53</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqXwBzggH7mk-BHH8RFV5SFVAiE4Istx7NY0iYvtFPXfk6qF0-5KM6OdD4BrjKYYI3r3utrFN7OdTwWZooIIgk7AGDOGMkJ5cbrfqcgoZ2wELmL8QogSWubnYEQKXuS85GPwOVu51gTVuLWBMalkInQdVLAz6ceHNfQW-qhd06jkQ4R9V5sAVUpB6eS2BqquhsFs-ibur2XjK9VA7ftN47rlJTizqonm6jgn4ONh_j57yhYvj8-z-0WmaSFSVlZlrsrKVqwixApCdI0s4YpYbRhnmKm81LpWdcFtLoigltRY41JV2FqkGJ2A20PuJvjv3sQkWxe1GZ7ujO-jxEPXnKMyx4OUHKQ6-BiDsXITXKvCTmIk91jlH1YpiDxgHUw3x_y-ak39b_njSH8BOD93hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787470841</pqid></control><display><type>article</type><title>Chimeralike states in a network of oscillators under attractive and repulsive global coupling</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Mishra, Arindam ; Hens, Chittaranjan ; Bose, Mridul ; Roy, Prodyot K ; Dana, Syamal K</creator><creatorcontrib>Mishra, Arindam ; Hens, Chittaranjan ; Bose, Mridul ; Roy, Prodyot K ; Dana, Syamal K</creatorcontrib><description>We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.062920</identifier><identifier>PMID: 26764787</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-12, Vol.92 (6), p.062920-062920, Article 062920</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-8b84a8bfb5b22f922cd0f27a2fce57515a48ccdad67f49293f2d1c18ab1ff0a53</citedby><cites>FETCH-LOGICAL-c369t-8b84a8bfb5b22f922cd0f27a2fce57515a48ccdad67f49293f2d1c18ab1ff0a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26764787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mishra, Arindam</creatorcontrib><creatorcontrib>Hens, Chittaranjan</creatorcontrib><creatorcontrib>Bose, Mridul</creatorcontrib><creatorcontrib>Roy, Prodyot K</creatorcontrib><creatorcontrib>Dana, Syamal K</creatorcontrib><title>Chimeralike states in a network of oscillators under attractive and repulsive global coupling</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EoqXwBzggH7mk-BHH8RFV5SFVAiE4Istx7NY0iYvtFPXfk6qF0-5KM6OdD4BrjKYYI3r3utrFN7OdTwWZooIIgk7AGDOGMkJ5cbrfqcgoZ2wELmL8QogSWubnYEQKXuS85GPwOVu51gTVuLWBMalkInQdVLAz6ceHNfQW-qhd06jkQ4R9V5sAVUpB6eS2BqquhsFs-ibur2XjK9VA7ftN47rlJTizqonm6jgn4ONh_j57yhYvj8-z-0WmaSFSVlZlrsrKVqwixApCdI0s4YpYbRhnmKm81LpWdcFtLoigltRY41JV2FqkGJ2A20PuJvjv3sQkWxe1GZ7ujO-jxEPXnKMyx4OUHKQ6-BiDsXITXKvCTmIk91jlH1YpiDxgHUw3x_y-ak39b_njSH8BOD93hQ</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>Mishra, Arindam</creator><creator>Hens, Chittaranjan</creator><creator>Bose, Mridul</creator><creator>Roy, Prodyot K</creator><creator>Dana, Syamal K</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151222</creationdate><title>Chimeralike states in a network of oscillators under attractive and repulsive global coupling</title><author>Mishra, Arindam ; Hens, Chittaranjan ; Bose, Mridul ; Roy, Prodyot K ; Dana, Syamal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-8b84a8bfb5b22f922cd0f27a2fce57515a48ccdad67f49293f2d1c18ab1ff0a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Arindam</creatorcontrib><creatorcontrib>Hens, Chittaranjan</creatorcontrib><creatorcontrib>Bose, Mridul</creatorcontrib><creatorcontrib>Roy, Prodyot K</creatorcontrib><creatorcontrib>Dana, Syamal K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Arindam</au><au>Hens, Chittaranjan</au><au>Bose, Mridul</au><au>Roy, Prodyot K</au><au>Dana, Syamal K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chimeralike states in a network of oscillators under attractive and repulsive global coupling</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-12-22</date><risdate>2015</risdate><volume>92</volume><issue>6</issue><spage>062920</spage><epage>062920</epage><pages>062920-062920</pages><artnum>062920</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.</abstract><cop>United States</cop><pmid>26764787</pmid><doi>10.1103/PhysRevE.92.062920</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-12, Vol.92 (6), p.062920-062920, Article 062920
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1787470841
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Chimeralike states in a network of oscillators under attractive and repulsive global coupling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chimeralike%20states%20in%20a%20network%20of%20oscillators%20under%20attractive%20and%20repulsive%20global%20coupling&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Mishra,%20Arindam&rft.date=2015-12-22&rft.volume=92&rft.issue=6&rft.spage=062920&rft.epage=062920&rft.pages=062920-062920&rft.artnum=062920&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.062920&rft_dat=%3Cproquest_cross%3E1787470841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-8b84a8bfb5b22f922cd0f27a2fce57515a48ccdad67f49293f2d1c18ab1ff0a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787470841&rft_id=info:pmid/26764787&rfr_iscdi=true