Loading…
Microtubule doublets are double-track railways for intraflagellar transport trains
The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the functi...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2016-05, Vol.352 (6286), p.721-724 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3 |
container_end_page | 724 |
container_issue | 6286 |
container_start_page | 721 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 352 |
creator | Stepanek, Ludek Pigino, Gaia |
description | The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components. |
doi_str_mv | 10.1126/science.aaf4594 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787478995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24744518</jstor_id><sourcerecordid>24744518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3</originalsourceid><addsrcrecordid>eNpdkM1LwzAUwIMobk7PnpSCFy_d8tUmOcrwCyaC6LmkaSKdWTOTFNl_b-Y6BU_v6_cejx8A5whOEcLlLKhWd0pPpTS0EPQAjBEURS4wJIdgDCEpcw5ZMQInISwhTDNBjsEIM1QgzuAYvDy1yrvY173VWeP62uoYMun3RR69VB-Zl639kpuQGeeztktNY-W7tlb6LBVdWDsft1nbhVNwZKQN-myIE_B2d_s6f8gXz_eP85tFrigiMVe8YIQzITkqDOFEKQkN5KTE1DRCUKEox0JDLGpqOGVMMoNJTaEgdUkaRSbgend37d1nr0OsVm1Q25867fpQIcYZZVyIIqFX_9Cl632XvvuhEBVliRI121HJSAhem2rt25X0mwrBaqu7GnRXg-60cTnc7euVbn75vd8EXOyAZYjO_80pozQR5Btk3ocV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787149661</pqid></control><display><type>article</type><title>Microtubule doublets are double-track railways for intraflagellar transport trains</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Science Online</source><source>Alma/SFX Local Collection</source><creator>Stepanek, Ludek ; Pigino, Gaia</creator><creatorcontrib>Stepanek, Ludek ; Pigino, Gaia</creatorcontrib><description>The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaf4594</identifier><identifier>PMID: 27151870</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Axoneme - metabolism ; Axoneme - ultrastructure ; Biological Transport ; Cellular biology ; Chlamydomonas - metabolism ; Chlamydomonas - ultrastructure ; Cilia - metabolism ; Cilia - ultrastructure ; Flagella - metabolism ; Flagella - ultrastructure ; Geometry ; Imaging, Three-Dimensional - methods ; Microscopy ; Microscopy, Electron - methods ; Microscopy, Fluorescence - methods</subject><ispartof>Science (American Association for the Advancement of Science), 2016-05, Vol.352 (6286), p.721-724</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science.</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3</citedby><cites>FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24744518$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24744518$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,2871,2872,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27151870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stepanek, Ludek</creatorcontrib><creatorcontrib>Pigino, Gaia</creatorcontrib><title>Microtubule doublets are double-track railways for intraflagellar transport trains</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components.</description><subject>Axoneme - metabolism</subject><subject>Axoneme - ultrastructure</subject><subject>Biological Transport</subject><subject>Cellular biology</subject><subject>Chlamydomonas - metabolism</subject><subject>Chlamydomonas - ultrastructure</subject><subject>Cilia - metabolism</subject><subject>Cilia - ultrastructure</subject><subject>Flagella - metabolism</subject><subject>Flagella - ultrastructure</subject><subject>Geometry</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Microscopy</subject><subject>Microscopy, Electron - methods</subject><subject>Microscopy, Fluorescence - methods</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAUwIMobk7PnpSCFy_d8tUmOcrwCyaC6LmkaSKdWTOTFNl_b-Y6BU_v6_cejx8A5whOEcLlLKhWd0pPpTS0EPQAjBEURS4wJIdgDCEpcw5ZMQInISwhTDNBjsEIM1QgzuAYvDy1yrvY173VWeP62uoYMun3RR69VB-Zl639kpuQGeeztktNY-W7tlb6LBVdWDsft1nbhVNwZKQN-myIE_B2d_s6f8gXz_eP85tFrigiMVe8YIQzITkqDOFEKQkN5KTE1DRCUKEox0JDLGpqOGVMMoNJTaEgdUkaRSbgend37d1nr0OsVm1Q25867fpQIcYZZVyIIqFX_9Cl632XvvuhEBVliRI121HJSAhem2rt25X0mwrBaqu7GnRXg-60cTnc7euVbn75vd8EXOyAZYjO_80pozQR5Btk3ocV</recordid><startdate>20160506</startdate><enddate>20160506</enddate><creator>Stepanek, Ludek</creator><creator>Pigino, Gaia</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160506</creationdate><title>Microtubule doublets are double-track railways for intraflagellar transport trains</title><author>Stepanek, Ludek ; Pigino, Gaia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Axoneme - metabolism</topic><topic>Axoneme - ultrastructure</topic><topic>Biological Transport</topic><topic>Cellular biology</topic><topic>Chlamydomonas - metabolism</topic><topic>Chlamydomonas - ultrastructure</topic><topic>Cilia - metabolism</topic><topic>Cilia - ultrastructure</topic><topic>Flagella - metabolism</topic><topic>Flagella - ultrastructure</topic><topic>Geometry</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Microscopy</topic><topic>Microscopy, Electron - methods</topic><topic>Microscopy, Fluorescence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stepanek, Ludek</creatorcontrib><creatorcontrib>Pigino, Gaia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stepanek, Ludek</au><au>Pigino, Gaia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtubule doublets are double-track railways for intraflagellar transport trains</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2016-05-06</date><risdate>2016</risdate><volume>352</volume><issue>6286</issue><spage>721</spage><epage>724</epage><pages>721-724</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27151870</pmid><doi>10.1126/science.aaf4594</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2016-05, Vol.352 (6286), p.721-724 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1787478995 |
source | JSTOR Archival Journals and Primary Sources Collection; Science Online; Alma/SFX Local Collection |
subjects | Axoneme - metabolism Axoneme - ultrastructure Biological Transport Cellular biology Chlamydomonas - metabolism Chlamydomonas - ultrastructure Cilia - metabolism Cilia - ultrastructure Flagella - metabolism Flagella - ultrastructure Geometry Imaging, Three-Dimensional - methods Microscopy Microscopy, Electron - methods Microscopy, Fluorescence - methods |
title | Microtubule doublets are double-track railways for intraflagellar transport trains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtubule%20doublets%20are%20double-track%20railways%20for%20intraflagellar%20transport%20trains&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Stepanek,%20Ludek&rft.date=2016-05-06&rft.volume=352&rft.issue=6286&rft.spage=721&rft.epage=724&rft.pages=721-724&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaf4594&rft_dat=%3Cjstor_proqu%3E24744518%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787149661&rft_id=info:pmid/27151870&rft_jstor_id=24744518&rfr_iscdi=true |