Loading…

Microtubule doublets are double-track railways for intraflagellar transport trains

The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the functi...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2016-05, Vol.352 (6286), p.721-724
Main Authors: Stepanek, Ludek, Pigino, Gaia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3
cites cdi_FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3
container_end_page 724
container_issue 6286
container_start_page 721
container_title Science (American Association for the Advancement of Science)
container_volume 352
creator Stepanek, Ludek
Pigino, Gaia
description The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components.
doi_str_mv 10.1126/science.aaf4594
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787478995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24744518</jstor_id><sourcerecordid>24744518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3</originalsourceid><addsrcrecordid>eNpdkM1LwzAUwIMobk7PnpSCFy_d8tUmOcrwCyaC6LmkaSKdWTOTFNl_b-Y6BU_v6_cejx8A5whOEcLlLKhWd0pPpTS0EPQAjBEURS4wJIdgDCEpcw5ZMQInISwhTDNBjsEIM1QgzuAYvDy1yrvY173VWeP62uoYMun3RR69VB-Zl639kpuQGeeztktNY-W7tlb6LBVdWDsft1nbhVNwZKQN-myIE_B2d_s6f8gXz_eP85tFrigiMVe8YIQzITkqDOFEKQkN5KTE1DRCUKEox0JDLGpqOGVMMoNJTaEgdUkaRSbgend37d1nr0OsVm1Q25867fpQIcYZZVyIIqFX_9Cl632XvvuhEBVliRI121HJSAhem2rt25X0mwrBaqu7GnRXg-60cTnc7euVbn75vd8EXOyAZYjO_80pozQR5Btk3ocV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787149661</pqid></control><display><type>article</type><title>Microtubule doublets are double-track railways for intraflagellar transport trains</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Science Online</source><source>Alma/SFX Local Collection</source><creator>Stepanek, Ludek ; Pigino, Gaia</creator><creatorcontrib>Stepanek, Ludek ; Pigino, Gaia</creatorcontrib><description>The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaf4594</identifier><identifier>PMID: 27151870</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Axoneme - metabolism ; Axoneme - ultrastructure ; Biological Transport ; Cellular biology ; Chlamydomonas - metabolism ; Chlamydomonas - ultrastructure ; Cilia - metabolism ; Cilia - ultrastructure ; Flagella - metabolism ; Flagella - ultrastructure ; Geometry ; Imaging, Three-Dimensional - methods ; Microscopy ; Microscopy, Electron - methods ; Microscopy, Fluorescence - methods</subject><ispartof>Science (American Association for the Advancement of Science), 2016-05, Vol.352 (6286), p.721-724</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science.</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3</citedby><cites>FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24744518$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24744518$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,2871,2872,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27151870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stepanek, Ludek</creatorcontrib><creatorcontrib>Pigino, Gaia</creatorcontrib><title>Microtubule doublets are double-track railways for intraflagellar transport trains</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components.</description><subject>Axoneme - metabolism</subject><subject>Axoneme - ultrastructure</subject><subject>Biological Transport</subject><subject>Cellular biology</subject><subject>Chlamydomonas - metabolism</subject><subject>Chlamydomonas - ultrastructure</subject><subject>Cilia - metabolism</subject><subject>Cilia - ultrastructure</subject><subject>Flagella - metabolism</subject><subject>Flagella - ultrastructure</subject><subject>Geometry</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Microscopy</subject><subject>Microscopy, Electron - methods</subject><subject>Microscopy, Fluorescence - methods</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAUwIMobk7PnpSCFy_d8tUmOcrwCyaC6LmkaSKdWTOTFNl_b-Y6BU_v6_cejx8A5whOEcLlLKhWd0pPpTS0EPQAjBEURS4wJIdgDCEpcw5ZMQInISwhTDNBjsEIM1QgzuAYvDy1yrvY173VWeP62uoYMun3RR69VB-Zl639kpuQGeeztktNY-W7tlb6LBVdWDsft1nbhVNwZKQN-myIE_B2d_s6f8gXz_eP85tFrigiMVe8YIQzITkqDOFEKQkN5KTE1DRCUKEox0JDLGpqOGVMMoNJTaEgdUkaRSbgend37d1nr0OsVm1Q25867fpQIcYZZVyIIqFX_9Cl632XvvuhEBVliRI121HJSAhem2rt25X0mwrBaqu7GnRXg-60cTnc7euVbn75vd8EXOyAZYjO_80pozQR5Btk3ocV</recordid><startdate>20160506</startdate><enddate>20160506</enddate><creator>Stepanek, Ludek</creator><creator>Pigino, Gaia</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160506</creationdate><title>Microtubule doublets are double-track railways for intraflagellar transport trains</title><author>Stepanek, Ludek ; Pigino, Gaia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Axoneme - metabolism</topic><topic>Axoneme - ultrastructure</topic><topic>Biological Transport</topic><topic>Cellular biology</topic><topic>Chlamydomonas - metabolism</topic><topic>Chlamydomonas - ultrastructure</topic><topic>Cilia - metabolism</topic><topic>Cilia - ultrastructure</topic><topic>Flagella - metabolism</topic><topic>Flagella - ultrastructure</topic><topic>Geometry</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Microscopy</topic><topic>Microscopy, Electron - methods</topic><topic>Microscopy, Fluorescence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stepanek, Ludek</creatorcontrib><creatorcontrib>Pigino, Gaia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stepanek, Ludek</au><au>Pigino, Gaia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtubule doublets are double-track railways for intraflagellar transport trains</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2016-05-06</date><risdate>2016</risdate><volume>352</volume><issue>6286</issue><spage>721</spage><epage>724</epage><pages>721-724</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27151870</pmid><doi>10.1126/science.aaf4594</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2016-05, Vol.352 (6286), p.721-724
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1787478995
source JSTOR Archival Journals and Primary Sources Collection; Science Online; Alma/SFX Local Collection
subjects Axoneme - metabolism
Axoneme - ultrastructure
Biological Transport
Cellular biology
Chlamydomonas - metabolism
Chlamydomonas - ultrastructure
Cilia - metabolism
Cilia - ultrastructure
Flagella - metabolism
Flagella - ultrastructure
Geometry
Imaging, Three-Dimensional - methods
Microscopy
Microscopy, Electron - methods
Microscopy, Fluorescence - methods
title Microtubule doublets are double-track railways for intraflagellar transport trains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtubule%20doublets%20are%20double-track%20railways%20for%20intraflagellar%20transport%20trains&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Stepanek,%20Ludek&rft.date=2016-05-06&rft.volume=352&rft.issue=6286&rft.spage=721&rft.epage=724&rft.pages=721-724&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaf4594&rft_dat=%3Cjstor_proqu%3E24744518%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-c8573879a815f383cca0f083624fd9949c4829e029b4f8477a7f23b4093b63dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787149661&rft_id=info:pmid/27151870&rft_jstor_id=24744518&rfr_iscdi=true