Loading…

Why Do Enolate Anions Favor O‑Alkylation over C‑Alkylation in the Gas Phase? The Roles of Resonance and Inductive Effects in the Gas-Phase SN2 Reaction between the Acetaldehyde Enolate Anion and Methyl Fluoride

Contributions by resonance and inductive effects toward the net activation barrier were determined computationally for the gas-phase SN2 reaction between the acetaldehyde enolate anion and methyl fluoride, for both O-methylation and C-methylation, in order to understand why this reaction favors O-me...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2016-05, Vol.81 (9), p.3711-3719
Main Authors: Seitz, Christian G, Zhang, Huaiyu, Mo, Yirong, Karty, Joel M
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Contributions by resonance and inductive effects toward the net activation barrier were determined computationally for the gas-phase SN2 reaction between the acetaldehyde enolate anion and methyl fluoride, for both O-methylation and C-methylation, in order to understand why this reaction favors O-methylation. With the use of the vinylogue extrapolation methodology, resonance effects were determined to contribute toward increasing the size of the barrier by about 9.5 kcal/mol for O-methylation and by about 21.2 kcal/mol for C-methylation. Inductive effects were determined to contribute toward increasing the size of the barrier by about 1.7 kcal/mol for O-methylation and 4.2 kcal/mol for C-methylation. Employing our block-localized wave function methodology, we determined the contributions by resonance to be 12.8 kcal/mol for O-methylation and 22.3 kcal/mol for C-methylation. Thus, whereas inductive effects have significant contributions, resonance is the dominant factor that leads to O-methylation being favored. More specifically, resonance serves to increase the size the barrier for C-methylation significantly more than it does for O-methylation.
ISSN:0022-3263
1520-6904
DOI:10.1021/acs.joc.6b00351