Loading…
Abnormal resting state functional connectivity of the periaqueductal grey in patients with fibromyalgia
Emerging evidence associates chronic pain syndrome, such as fibromyalgia, with endogenous pain modulatory system dysfunction, leading to an impaired descending pain inhibition. In this study, using resting-state functional magnetic resonance imaging (fMRI), we aimed at seeking possible functional co...
Saved in:
Published in: | Clinical and experimental rheumatology 2016-03, Vol.34 (2 Suppl 96), p.S129-S133 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Emerging evidence associates chronic pain syndrome, such as fibromyalgia, with endogenous pain modulatory system dysfunction, leading to an impaired descending pain inhibition. In this study, using resting-state functional magnetic resonance imaging (fMRI), we aimed at seeking possible functional connectivity changes of the periaqueductal gray (PAG), a brainstem area that belongs to the endogenous pain modulatory system, in patients with fibromyalgia.
In 20 patients with fibromyalgia and 15 healthy subjects, we investigated PAG functional connectivity using resting-state fMRI. We also analysed the correlation between clinical variables, such as pain severity, disease duration, and depressive personality traits with PAG functional connectivity.
Compared with control subjects, we identified that patients with fibromyalgia had an increased PAG connectivity with insula, anterior cingulate cortex, and anterior prefrontal cortex. The functional connectivity between PAG and the rostral ventral medulla, however, was not concordantly increased. PAG functional connectivity correlated with pain severity, disease duration, and the depressive personality trait rating.
Our fMRI study showing abnormal resting state functional connectivity of the PAG suggests that patients with fibromyalgia have an endogenous pain modulatory system dysfunction, possibly causing an impaired descending pain inhibition. This abnormal PAG functioning might underlay the chronic pain these patients suffer from. |
---|---|
ISSN: | 0392-856X |