Loading…

Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system

Perfluoroalkyl acids (PFAAs) bioaccumulate in plants, presenting a human exposure route if present in irrigation water. Curiously, accumulation of PFAAs in plant tissues is greatest for both the short‐chain and long‐chain PFAAs, generating a U‐shaped relationship with chain length. In the present st...

Full description

Saved in:
Bibliographic Details
Published in:Environmental toxicology and chemistry 2016-05, Vol.35 (5), p.1138-1147
Main Authors: Müller, Claudia E., LeFevre, Gregory H., Timofte, Anca E., Hussain, Fatima A., Sattely, Elizabeth S., Luthy, Richard G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4811-fd72c9dcf3ad95a07a1fa5055aab79c6ed658382d5da96172bb57318b282b4903
cites cdi_FETCH-LOGICAL-c4811-fd72c9dcf3ad95a07a1fa5055aab79c6ed658382d5da96172bb57318b282b4903
container_end_page 1147
container_issue 5
container_start_page 1138
container_title Environmental toxicology and chemistry
container_volume 35
creator Müller, Claudia E.
LeFevre, Gregory H.
Timofte, Anca E.
Hussain, Fatima A.
Sattely, Elizabeth S.
Luthy, Richard G.
description Perfluoroalkyl acids (PFAAs) bioaccumulate in plants, presenting a human exposure route if present in irrigation water. Curiously, accumulation of PFAAs in plant tissues is greatest for both the short‐chain and long‐chain PFAAs, generating a U‐shaped relationship with chain length. In the present study, the authors decouple competing mechanisms of PFAA accumulation using a hydroponic model plant system (Arabidopsis thaliana) exposed to a suite of 10 PFAAs to determine uptake, depuration, and translocation kinetics. Rapid saturation of root concentrations occurred for all PFAAs except perfluorobutanoate, the least‐sorptive (shortest‐chain) PFAA. Shoot concentrations increased continuously, indicating that PFAAs are efficiently transported and accumulate in shoots. Tissue concentrations of PFAAs during depuration rapidly declined in roots but remained constant in shoots, demonstrating irreversibility of the translocation process. Root and shoot concentration factors followed the U‐shaped trend with perfluoroalkyl chain length; however, when normalized to dead‐tissue sorption, this relationship linearized. The authors therefore introduce a novel term, the “sorption normalized concentration factor,” to describe PFAA accumulation in plants; because of their hydrophobicity, sorption is the determining factor for long‐chain PFAAs, whereas the shortest‐chain PFAAs are most effectively transported in the plant. The present study provides a mechanistic explanation for previously unexplained PFAA accumulation trends in plants and suggests that shorter‐chained PFAAs may bioaccumulate more readily in edible portions. Environ Toxicol Chem 2016;35:1138–1147. © 2015 SETAC
doi_str_mv 10.1002/etc.3251
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787973376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4025807421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4811-fd72c9dcf3ad95a07a1fa5055aab79c6ed658382d5da96172bb57318b282b4903</originalsourceid><addsrcrecordid>eNp10l1rFDEUBuAgil2r4C_QgDfeTM3H5OuyrO4qFEW0Ct6ETJKpaTOTaTKj7r83y64VBG-Sm4eXw3kPAE8xOsMIkVd-tmeUMHwPrDBjpJEcy_tghQRFjSBcnoBHpVwjhLlS6iE4IZxKqqRagXGdhsnPYbyCg7ffzRjKUGCfMpx87uOScjLxZhehscHVxy7DEs0c0gjDCKdoxrnA7H94E72DS9kHmRGeZ9MFl6YSChyS8xGWXZn98Bg86E0s_snxPwWXmzef12-biw_bd-vzi8a2EuOmd4JY5WxPjVPMIGFwbxhizJhOKMu940xSSRxzRnEsSNcxQbHsiCRdqxA9BS8PuVNOt4svsx5CsT7WeX1aisZCCiUoFbzSF__Q67TksU63V5i1DPH2b6DNqZTsez3lMJi80xjpfQe6dqD3HVT67Bi4dIN3d_DP0itoDuBniH733yBdzTHw6ENd4a87b_KN5oIKpr--3-rt5uMXtf220a-rf37wvUnaXOVQ9OUnUsuvB9AKxDn9DWPBqYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781545064</pqid></control><display><type>article</type><title>Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system</title><source>Wiley</source><creator>Müller, Claudia E. ; LeFevre, Gregory H. ; Timofte, Anca E. ; Hussain, Fatima A. ; Sattely, Elizabeth S. ; Luthy, Richard G.</creator><creatorcontrib>Müller, Claudia E. ; LeFevre, Gregory H. ; Timofte, Anca E. ; Hussain, Fatima A. ; Sattely, Elizabeth S. ; Luthy, Richard G.</creatorcontrib><description>Perfluoroalkyl acids (PFAAs) bioaccumulate in plants, presenting a human exposure route if present in irrigation water. Curiously, accumulation of PFAAs in plant tissues is greatest for both the short‐chain and long‐chain PFAAs, generating a U‐shaped relationship with chain length. In the present study, the authors decouple competing mechanisms of PFAA accumulation using a hydroponic model plant system (Arabidopsis thaliana) exposed to a suite of 10 PFAAs to determine uptake, depuration, and translocation kinetics. Rapid saturation of root concentrations occurred for all PFAAs except perfluorobutanoate, the least‐sorptive (shortest‐chain) PFAA. Shoot concentrations increased continuously, indicating that PFAAs are efficiently transported and accumulate in shoots. Tissue concentrations of PFAAs during depuration rapidly declined in roots but remained constant in shoots, demonstrating irreversibility of the translocation process. Root and shoot concentration factors followed the U‐shaped trend with perfluoroalkyl chain length; however, when normalized to dead‐tissue sorption, this relationship linearized. The authors therefore introduce a novel term, the “sorption normalized concentration factor,” to describe PFAA accumulation in plants; because of their hydrophobicity, sorption is the determining factor for long‐chain PFAAs, whereas the shortest‐chain PFAAs are most effectively transported in the plant. The present study provides a mechanistic explanation for previously unexplained PFAA accumulation trends in plants and suggests that shorter‐chained PFAAs may bioaccumulate more readily in edible portions. Environ Toxicol Chem 2016;35:1138–1147. © 2015 SETAC</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.3251</identifier><identifier>PMID: 26383989</identifier><language>eng</language><publisher>United States: Pergamon</publisher><subject>Accumulation ; Arabidopsis ; Arabidopsis - chemistry ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Bioaccumulation ; Environmental fate ; Fluorocarbons - analysis ; Fluorocarbons - metabolism ; Hydroponics ; Irrigation water ; Kinetics ; Perfluoroalkyl substance ; Plant ; Plant pathology ; Plant Roots - chemistry ; Plant Roots - metabolism ; Plant tissues ; Shoots ; Sorption ; Toxicology ; Translocation ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - metabolism</subject><ispartof>Environmental toxicology and chemistry, 2016-05, Vol.35 (5), p.1138-1147</ispartof><rights>2015 SETAC</rights><rights>2015 SETAC.</rights><rights>2016 SETAC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4811-fd72c9dcf3ad95a07a1fa5055aab79c6ed658382d5da96172bb57318b282b4903</citedby><cites>FETCH-LOGICAL-c4811-fd72c9dcf3ad95a07a1fa5055aab79c6ed658382d5da96172bb57318b282b4903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26383989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Claudia E.</creatorcontrib><creatorcontrib>LeFevre, Gregory H.</creatorcontrib><creatorcontrib>Timofte, Anca E.</creatorcontrib><creatorcontrib>Hussain, Fatima A.</creatorcontrib><creatorcontrib>Sattely, Elizabeth S.</creatorcontrib><creatorcontrib>Luthy, Richard G.</creatorcontrib><title>Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system</title><title>Environmental toxicology and chemistry</title><addtitle>Environ Toxicol Chem</addtitle><description>Perfluoroalkyl acids (PFAAs) bioaccumulate in plants, presenting a human exposure route if present in irrigation water. Curiously, accumulation of PFAAs in plant tissues is greatest for both the short‐chain and long‐chain PFAAs, generating a U‐shaped relationship with chain length. In the present study, the authors decouple competing mechanisms of PFAA accumulation using a hydroponic model plant system (Arabidopsis thaliana) exposed to a suite of 10 PFAAs to determine uptake, depuration, and translocation kinetics. Rapid saturation of root concentrations occurred for all PFAAs except perfluorobutanoate, the least‐sorptive (shortest‐chain) PFAA. Shoot concentrations increased continuously, indicating that PFAAs are efficiently transported and accumulate in shoots. Tissue concentrations of PFAAs during depuration rapidly declined in roots but remained constant in shoots, demonstrating irreversibility of the translocation process. Root and shoot concentration factors followed the U‐shaped trend with perfluoroalkyl chain length; however, when normalized to dead‐tissue sorption, this relationship linearized. The authors therefore introduce a novel term, the “sorption normalized concentration factor,” to describe PFAA accumulation in plants; because of their hydrophobicity, sorption is the determining factor for long‐chain PFAAs, whereas the shortest‐chain PFAAs are most effectively transported in the plant. The present study provides a mechanistic explanation for previously unexplained PFAA accumulation trends in plants and suggests that shorter‐chained PFAAs may bioaccumulate more readily in edible portions. Environ Toxicol Chem 2016;35:1138–1147. © 2015 SETAC</description><subject>Accumulation</subject><subject>Arabidopsis</subject><subject>Arabidopsis - chemistry</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Bioaccumulation</subject><subject>Environmental fate</subject><subject>Fluorocarbons - analysis</subject><subject>Fluorocarbons - metabolism</subject><subject>Hydroponics</subject><subject>Irrigation water</subject><subject>Kinetics</subject><subject>Perfluoroalkyl substance</subject><subject>Plant</subject><subject>Plant pathology</subject><subject>Plant Roots - chemistry</subject><subject>Plant Roots - metabolism</subject><subject>Plant tissues</subject><subject>Shoots</subject><subject>Sorption</subject><subject>Toxicology</subject><subject>Translocation</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - metabolism</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10l1rFDEUBuAgil2r4C_QgDfeTM3H5OuyrO4qFEW0Ct6ETJKpaTOTaTKj7r83y64VBG-Sm4eXw3kPAE8xOsMIkVd-tmeUMHwPrDBjpJEcy_tghQRFjSBcnoBHpVwjhLlS6iE4IZxKqqRagXGdhsnPYbyCg7ffzRjKUGCfMpx87uOScjLxZhehscHVxy7DEs0c0gjDCKdoxrnA7H94E72DS9kHmRGeZ9MFl6YSChyS8xGWXZn98Bg86E0s_snxPwWXmzef12-biw_bd-vzi8a2EuOmd4JY5WxPjVPMIGFwbxhizJhOKMu940xSSRxzRnEsSNcxQbHsiCRdqxA9BS8PuVNOt4svsx5CsT7WeX1aisZCCiUoFbzSF__Q67TksU63V5i1DPH2b6DNqZTsez3lMJi80xjpfQe6dqD3HVT67Bi4dIN3d_DP0itoDuBniH733yBdzTHw6ENd4a87b_KN5oIKpr--3-rt5uMXtf220a-rf37wvUnaXOVQ9OUnUsuvB9AKxDn9DWPBqYY</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Müller, Claudia E.</creator><creator>LeFevre, Gregory H.</creator><creator>Timofte, Anca E.</creator><creator>Hussain, Fatima A.</creator><creator>Sattely, Elizabeth S.</creator><creator>Luthy, Richard G.</creator><general>Pergamon</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>201605</creationdate><title>Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system</title><author>Müller, Claudia E. ; LeFevre, Gregory H. ; Timofte, Anca E. ; Hussain, Fatima A. ; Sattely, Elizabeth S. ; Luthy, Richard G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4811-fd72c9dcf3ad95a07a1fa5055aab79c6ed658382d5da96172bb57318b282b4903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accumulation</topic><topic>Arabidopsis</topic><topic>Arabidopsis - chemistry</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Bioaccumulation</topic><topic>Environmental fate</topic><topic>Fluorocarbons - analysis</topic><topic>Fluorocarbons - metabolism</topic><topic>Hydroponics</topic><topic>Irrigation water</topic><topic>Kinetics</topic><topic>Perfluoroalkyl substance</topic><topic>Plant</topic><topic>Plant pathology</topic><topic>Plant Roots - chemistry</topic><topic>Plant Roots - metabolism</topic><topic>Plant tissues</topic><topic>Shoots</topic><topic>Sorption</topic><topic>Toxicology</topic><topic>Translocation</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Claudia E.</creatorcontrib><creatorcontrib>LeFevre, Gregory H.</creatorcontrib><creatorcontrib>Timofte, Anca E.</creatorcontrib><creatorcontrib>Hussain, Fatima A.</creatorcontrib><creatorcontrib>Sattely, Elizabeth S.</creatorcontrib><creatorcontrib>Luthy, Richard G.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Claudia E.</au><au>LeFevre, Gregory H.</au><au>Timofte, Anca E.</au><au>Hussain, Fatima A.</au><au>Sattely, Elizabeth S.</au><au>Luthy, Richard G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environ Toxicol Chem</addtitle><date>2016-05</date><risdate>2016</risdate><volume>35</volume><issue>5</issue><spage>1138</spage><epage>1147</epage><pages>1138-1147</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><abstract>Perfluoroalkyl acids (PFAAs) bioaccumulate in plants, presenting a human exposure route if present in irrigation water. Curiously, accumulation of PFAAs in plant tissues is greatest for both the short‐chain and long‐chain PFAAs, generating a U‐shaped relationship with chain length. In the present study, the authors decouple competing mechanisms of PFAA accumulation using a hydroponic model plant system (Arabidopsis thaliana) exposed to a suite of 10 PFAAs to determine uptake, depuration, and translocation kinetics. Rapid saturation of root concentrations occurred for all PFAAs except perfluorobutanoate, the least‐sorptive (shortest‐chain) PFAA. Shoot concentrations increased continuously, indicating that PFAAs are efficiently transported and accumulate in shoots. Tissue concentrations of PFAAs during depuration rapidly declined in roots but remained constant in shoots, demonstrating irreversibility of the translocation process. Root and shoot concentration factors followed the U‐shaped trend with perfluoroalkyl chain length; however, when normalized to dead‐tissue sorption, this relationship linearized. The authors therefore introduce a novel term, the “sorption normalized concentration factor,” to describe PFAA accumulation in plants; because of their hydrophobicity, sorption is the determining factor for long‐chain PFAAs, whereas the shortest‐chain PFAAs are most effectively transported in the plant. The present study provides a mechanistic explanation for previously unexplained PFAA accumulation trends in plants and suggests that shorter‐chained PFAAs may bioaccumulate more readily in edible portions. Environ Toxicol Chem 2016;35:1138–1147. © 2015 SETAC</abstract><cop>United States</cop><pub>Pergamon</pub><pmid>26383989</pmid><doi>10.1002/etc.3251</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-7268
ispartof Environmental toxicology and chemistry, 2016-05, Vol.35 (5), p.1138-1147
issn 0730-7268
1552-8618
language eng
recordid cdi_proquest_miscellaneous_1787973376
source Wiley
subjects Accumulation
Arabidopsis
Arabidopsis - chemistry
Arabidopsis - metabolism
Arabidopsis thaliana
Bioaccumulation
Environmental fate
Fluorocarbons - analysis
Fluorocarbons - metabolism
Hydroponics
Irrigation water
Kinetics
Perfluoroalkyl substance
Plant
Plant pathology
Plant Roots - chemistry
Plant Roots - metabolism
Plant tissues
Shoots
Sorption
Toxicology
Translocation
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - metabolism
title Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competing%20mechanisms%20for%20perfluoroalkyl%20acid%20accumulation%20in%20plants%20revealed%20using%20an%20Arabidopsis%20model%20system&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=M%C3%BCller,%20Claudia%20E.&rft.date=2016-05&rft.volume=35&rft.issue=5&rft.spage=1138&rft.epage=1147&rft.pages=1138-1147&rft.issn=0730-7268&rft.eissn=1552-8618&rft_id=info:doi/10.1002/etc.3251&rft_dat=%3Cproquest_cross%3E4025807421%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4811-fd72c9dcf3ad95a07a1fa5055aab79c6ed658382d5da96172bb57318b282b4903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1781545064&rft_id=info:pmid/26383989&rfr_iscdi=true