Loading…

Abandoned metal mines and their impact on receiving waters: A case study from Southwest England

Historic mine sites are a major source of contamination to terrestrial and river environments. To demonstrate the importance of determining the significance of point and diffuse metal contamination and the related bioavailability of the metals present from abandoned mines a case study has been carri...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2016-06, Vol.153, p.294-306
Main Authors: Beane, Steven J., Comber, Sean D.W., Rieuwerts, John, Long, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Historic mine sites are a major source of contamination to terrestrial and river environments. To demonstrate the importance of determining the significance of point and diffuse metal contamination and the related bioavailability of the metals present from abandoned mines a case study has been carried out. The study provides a quantitative assessment of a historic mine site, Wheal Betsy, southwest England, and its contribution to non-compliance with Water Framework Directive (WFD) Environmental Quality Standards (EQS) for Cd, Cu, Pb and Zn. Surface water and sediment samples showed significant negative environmental impacts even taking account of the bioavailability of the metal present, with lead concentration in the stream sediment up to 76 times higher than the Canadian sediment guidelines ‘Probable Effect Level’. Benthic invertebrates showed a decline in species richness adjacent to the mine site with lead and cadmium the main cause. The main mine drainage adit was the single most significant source of metal (typically 50% of metal load from the area, but 88% for Ni) but the mine spoil tips north and south of the adit input added together discharged roughly an equivalent loading of metal with the exception of Ni. The bioavailability of metal in the spoil tips exhibited differing spatial patterns owing to varying ambient soil physico-chemistry. The data collected is essential to provide a clear understanding of the contamination present as well as its mobility and bioavailability, in order to direct the decision making process regarding remediation options and their likely effectiveness. •Systematic assessment of mine contamination for soil, spoil, sediment and biota.•Bioavailability estimated for metals in water, spoil, soil and sediment.•Chemical speciation linked to quality standards and ecological impacts.•Contamination identified in all media split between adit discharge and diffuse runoff.•Systematic approach to mine site assessments identified for general use.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2016.03.022