Loading…

Elucidating the binding efficacy of β-galactosidase on graphene by docking approach and its potential application in galacto-oligosaccharide production

Herein, we propose the synthesis and characterization of graphene for the immobilization of β-galactosidase for improved galacto-oligosaccharide (GOS) production. The size of synthesized graphene was observed to be 25 nm by TEM analysis while interaction of enzyme with the nanosupport was observed b...

Full description

Saved in:
Bibliographic Details
Published in:Bioprocess and biosystems engineering 2016-05, Vol.39 (5), p.807-814
Main Authors: Satar, Rukhsana, Ismail, Syed Ahmed, Rehan, Mohd, Ansari, Shakeel Ahmed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, we propose the synthesis and characterization of graphene for the immobilization of β-galactosidase for improved galacto-oligosaccharide (GOS) production. The size of synthesized graphene was observed to be 25 nm by TEM analysis while interaction of enzyme with the nanosupport was observed by FTIR spectroscopy. Docking was obtained using molecular docking program Dock v.6.5 while the visual analyses and illustration of protein–ligand complex were investigated by utilizing chimera v.1.6.2 and PyMOL v.1.3 softwares. Immobilized β-galactosidase (IβG) showed improved stability against various physical and chemical denaturants. K m of IβG was increased to 6.41 mM as compared to 2.38 mM of soluble enzyme without bringing significant change in V max value. Maximum GOS content also registered an increase in lactose conversion. The maximum GOS production was achieved by immobilized enzyme at specific temperature and time. Hence, the developed nanosupport can be further exploited for developing a biosensor involving β-galactosidase or for immobilization of other industrially/therapeutically important enzymes.
ISSN:1615-7591
1615-7605
DOI:10.1007/s00449-016-1560-6