Loading…

Tailwater habitat stability after dam removal and return to a natural hydrological regime

The study was conducted from 2000 to 2003 in the tailwater of the Drzewieckie Lake, an artificial reservoir in Central Poland. Short-term peaks in water flow were generated for the purpose of the operation of a whitewater slalom canoeing track built just downstream of the dam. In 2002, the reservoir...

Full description

Saved in:
Bibliographic Details
Published in:Oceanological and hydrobiological studies 2015-09, Vol.44 (3), p.410-425
Main Authors: Tszydel, Mariusz, Kruk, Andrzej
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study was conducted from 2000 to 2003 in the tailwater of the Drzewieckie Lake, an artificial reservoir in Central Poland. Short-term peaks in water flow were generated for the purpose of the operation of a whitewater slalom canoeing track built just downstream of the dam. In 2002, the reservoir was drawn down. The patterns in habitat samples were recognized with a Kohonen’s unsupervised artificial neural network (SOM). The SOM spatial gradient was stronger than the SOM temporal gradient, which shows that the removal of the studied dam did not have a destructive impact on habitats’ features, as shown in other studies, and that the patchy nature of the riverbed has been maintained. The complete emptying of the Drzewieckie Lake took place at the beginning of the vegetation season, which allowed plants to cover the exposed bottom of the reservoir and, consequently, reduce the downstream flow of organic matter accumulated there. Patterns in the displacement of aquatic macrophytes, inorganic substratum and different fractions of particulate organic matter are discussed. The amount of dissolved oxygen decreased because of the lack of intensive water discharge from the reservoir into the river, which would result in high water turbulence. Results of this study are important for planning the ecologically sound dam removals.
ISSN:1897-3191
1730-413X
1897-3191
DOI:10.1515/ohs-2015-0038