Loading…

Activation of human macrophages by amyloid-beta is attenuated by astrocytes

In Alzheimer's disease, neuritic amyloid-beta plaques along with surrounding activated microglia and astrocytes are thought to play an important role in the inflammatory events leading to neurodegeneration. Studies have indicated that amyloid-beta can be directly neurotoxic by activating these...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2001-06, Vol.166 (11), p.6869-6876
Main Authors: Smits, H A, van Beelen, A J, de Vos, N M, Rijsmus, A, van der Bruggen, T, Verhoef, J, van Muiswinkel, F L, Nottet, H S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In Alzheimer's disease, neuritic amyloid-beta plaques along with surrounding activated microglia and astrocytes are thought to play an important role in the inflammatory events leading to neurodegeneration. Studies have indicated that amyloid-beta can be directly neurotoxic by activating these glial cells to produce oxygen radicals and proinflammatory cytokines. This report shows that, using primary human monocyte-derived macrophages as model cells for microglia, amyloid-beta(1-42) stimulate these macrophages to the production of superoxide anions and TNF-alpha. In contrast, astrocytes do not produce both inflammatory mediators when stimulated with amyloid-beta(1-42). In cocultures with astrocytes and amyloid-beta(1-42)-stimulated macrophages, decreased levels of both superoxide anion and TNF-alpha were detected. These decreased levels of potential neurotoxins were due to binding of amyloid-beta(1-42) to astrocytes since FACScan analysis demonstrated binding of FITC-labeled amyloid-beta(1-42) to astrocytoma cells and pretreatment of astrocytes with amyloid-beta(1-16) prevented the decrease of superoxide anion in cocultures of human astrocytes and amyloid-beta(1-42)-stimulated macrophages. To elucidate an intracellular pathway involved in TNF-alpha secretion, the activation state of NF-kappaB was investigated in macrophages and astrocytoma cells after amyloid-beta(1-42) treatment. Interestingly, although activation of NF-kappaB could not be detected in amyloid-beta-stimulated macrophages, it was readily detected in astrocytoma cells. These results not only demonstrate that amyloid-beta stimulation of astrocytes and macrophages result in different intracellular pathway activation but also indicate that astrocytes attenuate the immune response of macrophages to amyloid-beta(1-42) by interfering with amyloid-beta(1-42) binding to macrophages.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.166.11.6869