Loading…
Molecular Determinants of Receptor Binding and Signaling by the CX3C Chemokine Fractalkine
Fractalkine/CX3CL1 is a membrane-tethered chemokine that functions as a chemoattractant and adhesion protein by interacting with the receptor CX3CR1. To understand the molecular basis for the interaction, an extensive mutagenesis study of fractalkine's chemokine domain was undertaken. The resul...
Saved in:
Published in: | The Journal of biological chemistry 2001-09, Vol.276 (36), p.33906-33914 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fractalkine/CX3CL1 is a membrane-tethered chemokine that functions as a chemoattractant and adhesion protein by interacting
with the receptor CX3CR1. To understand the molecular basis for the interaction, an extensive mutagenesis study of fractalkine's
chemokine domain was undertaken. The results reveal a cluster of basic residues (Lys-8, Lys-15, Lys-37, Arg-45, and Arg-48)
and one aromatic (Phe-50) that are critical for binding and/or signaling. The mutant R48A could bind but not induce chemotaxis,
demonstrating that Arg-48 is a signaling trigger. This result also shows that signaling residues are not confined to chemokine
N termini, as generally thought. F50A showed no detectable binding, underscoring its importance to the stability of the complex.
K15A displayed unique signaling characteristics, eliciting a wild-type calcium flux but minimal chemotaxis, suggesting that
this mutant can activate some, but not all, pathways required for migration. Fractalkine also binds the human cytomegalovirus
receptor US28, and analysis of the mutants indicates that US28 recognizes many of the same epitopes of fractalkine as CX3CR1.
Comparison of the binding surfaces of fractalkine and the CC chemokine MCP-1 reveals structural details that may account for
their dual recognition by US28 and their selective recognition by host receptors. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M101348200 |