Loading…

Ribosomal DNA is an effective marker of Brassica chromosomes

Simultaneous fluorescence in situ hybridisation with 5S and 25S rDNA probes enables the discrimination of a substantial number of chromosomes of the complement of all diploid and tetraploid Brassica species of the "U-triangle", and provides new chromosomal landmarks for the identification...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics 2001-09, Vol.103 (4), p.486-490
Main Authors: HASTEROK, R, JENKINS, G, LANGDON, T, JONES, R. N, MALUSZYNSKA, J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Simultaneous fluorescence in situ hybridisation with 5S and 25S rDNA probes enables the discrimination of a substantial number of chromosomes of the complement of all diploid and tetraploid Brassica species of the "U-triangle", and provides new chromosomal landmarks for the identification of some chromosomes of this genus which were hitherto indistinguishable. Twelve out of 20 chromosomes can be easily identified in diploid Brassica campestris (AA genome), eight out of 16 in Brassica nigra (BB genome), and six out of 18 in Brassica oleracea (CC genome). Furthermore, just two rDNA markers permit 20 out of 36 chromosomes to be distinguished and assigned to either the A or B genomes of the allotetraploid Brassica juncea, and 18 out of 38 chromosomes identified and assigned to the A or C genomes of the allotetraploid Brassica napus. The number of chromosomes bearing rDNA sites in the tetraploids is not in all cases simply the sum of the numbers of sites in their diploid ancestors. This observation is discussed in terms of the phylogeny and variability within the genomes of the species of this group.[PUBLICATION ABSTRACT]
ISSN:0040-5752
1432-2242
DOI:10.1007/s001220100653