Loading…

Quantifying force and positional frequency bands in neurosurgical tasks

To establish the design requirements for an MR-compatible haptic hand-controller, this paper measures magnitudes and frequency bands of three mechanical motion and interaction components during the performance of neurosurgical tasks on a cadaveric brain. The hand-controller would allow the performan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of robotic surgery 2016-06, Vol.10 (2), p.97-102
Main Authors: Maddahi, Yaser, Ghasemloonia, Ahmad, Zareinia, Kourosh, Sepehri, Nariman, Sutherland, Garnette R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-4d4d4d82f34e4d0aca1256a2708b70598392fc590802e0f51f254a56cceed7d43
cites cdi_FETCH-LOGICAL-c372t-4d4d4d82f34e4d0aca1256a2708b70598392fc590802e0f51f254a56cceed7d43
container_end_page 102
container_issue 2
container_start_page 97
container_title Journal of robotic surgery
container_volume 10
creator Maddahi, Yaser
Ghasemloonia, Ahmad
Zareinia, Kourosh
Sepehri, Nariman
Sutherland, Garnette R.
description To establish the design requirements for an MR-compatible haptic hand-controller, this paper measures magnitudes and frequency bands of three mechanical motion and interaction components during the performance of neurosurgical tasks on a cadaveric brain. The hand-controller would allow the performance of virtual neurosurgical tasks within the bore of a high field magnet during image acquisition, i.e., functional MRI. The components are the position and the orientation of a surgical tool, and the force interaction between the tool and the brain tissue. A bipolar forceps was retrofitted with a tracking system and a set of force sensing components to measure displacements and forces, respectively. Results showed working positional, rotational, and force frequency bands of 3, 3 and 5 Hz, respectively. Peak forces of 1.4, 2.9 and 3.0 N were measured in the Cartesian coordinate system. A workspace of 50.1 × 39.8 × 58.2 mm 3 and orientation ranges of 40.4°, 60.1° and 63.1° for azimuth, elevation, and roll angles were observed. The results contribute in providing information specific to neurosurgery that can be used to effectively design a compact and customized haptic hand-controller reflecting characteristics of neurosurgical tasks.
doi_str_mv 10.1007/s11701-016-0561-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790021466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918715245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4d4d4d82f34e4d0aca1256a2708b70598392fc590802e0f51f254a56cceed7d43</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMo7rr6A7xIwYuX6kyaNO1RRFdhQQQ9h2yaLF276Zq0h_33pnRdQZAcJjDfvJn3CLlEuEUAcRcQBWAKmKfAc0zZEZlikWcpZSUeH_5FNiFnIawBuOAZnpIJzUtkOccpmb_1ynW13dVuldjWa5MoVyXbNtRd3TrVJNabr944vUuWsROS2iXO9L4NvV_VOgKdCp_hnJxY1QRzsa8z8vH0-P7wnC5e5y8P94tUZ4J2KauGV1CbMcMqUFoh5bmiAoqlAF4WWUmt5iUUQA1YjpZypniutTGVqFg2Izej7ta38azQyU0dtGka5UzbB4miBKDRXB7R6z_ouu19tBQkLbEQyCnjkcKR0tFS8MbKra83yu8kghxSlmPKMqYsh5TlcMTVXrlfbkx1mPiJNQJ0BEJsuZXxv6v_V_0Gp8iGqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918715245</pqid></control><display><type>article</type><title>Quantifying force and positional frequency bands in neurosurgical tasks</title><source>Springer Nature</source><creator>Maddahi, Yaser ; Ghasemloonia, Ahmad ; Zareinia, Kourosh ; Sepehri, Nariman ; Sutherland, Garnette R.</creator><creatorcontrib>Maddahi, Yaser ; Ghasemloonia, Ahmad ; Zareinia, Kourosh ; Sepehri, Nariman ; Sutherland, Garnette R.</creatorcontrib><description>To establish the design requirements for an MR-compatible haptic hand-controller, this paper measures magnitudes and frequency bands of three mechanical motion and interaction components during the performance of neurosurgical tasks on a cadaveric brain. The hand-controller would allow the performance of virtual neurosurgical tasks within the bore of a high field magnet during image acquisition, i.e., functional MRI. The components are the position and the orientation of a surgical tool, and the force interaction between the tool and the brain tissue. A bipolar forceps was retrofitted with a tracking system and a set of force sensing components to measure displacements and forces, respectively. Results showed working positional, rotational, and force frequency bands of 3, 3 and 5 Hz, respectively. Peak forces of 1.4, 2.9 and 3.0 N were measured in the Cartesian coordinate system. A workspace of 50.1 × 39.8 × 58.2 mm 3 and orientation ranges of 40.4°, 60.1° and 63.1° for azimuth, elevation, and roll angles were observed. The results contribute in providing information specific to neurosurgery that can be used to effectively design a compact and customized haptic hand-controller reflecting characteristics of neurosurgical tasks.</description><identifier>ISSN: 1863-2483</identifier><identifier>EISSN: 1863-2491</identifier><identifier>DOI: 10.1007/s11701-016-0561-4</identifier><identifier>PMID: 26914651</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Biomechanical Phenomena ; Brain ; Cadaver ; Cartesian coordinates ; Controllers ; Design of experiments ; Equipment Design ; Fourier transforms ; Frequencies ; Hand ; Haptics ; Humans ; Image acquisition ; Interfaces ; Magnetic Resonance Imaging ; Medical instruments ; Medicine ; Medicine &amp; Public Health ; Minimally Invasive Surgery ; Movement ; Neurosurgery ; Neurosurgical Procedures - instrumentation ; Original Article ; Retrofitting ; Robotic Surgical Procedures - instrumentation ; Strain gauges ; Surgeons ; Surgery ; Surgical apparatus &amp; instruments ; Surgical Instruments ; Tracking systems ; Transmitters ; Urology ; Virtual reality ; Workplace</subject><ispartof>Journal of robotic surgery, 2016-06, Vol.10 (2), p.97-102</ispartof><rights>Springer-Verlag London 2016</rights><rights>Springer-Verlag London 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4d4d4d82f34e4d0aca1256a2708b70598392fc590802e0f51f254a56cceed7d43</citedby><cites>FETCH-LOGICAL-c372t-4d4d4d82f34e4d0aca1256a2708b70598392fc590802e0f51f254a56cceed7d43</cites><orcidid>0000-0002-5180-782X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26914651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maddahi, Yaser</creatorcontrib><creatorcontrib>Ghasemloonia, Ahmad</creatorcontrib><creatorcontrib>Zareinia, Kourosh</creatorcontrib><creatorcontrib>Sepehri, Nariman</creatorcontrib><creatorcontrib>Sutherland, Garnette R.</creatorcontrib><title>Quantifying force and positional frequency bands in neurosurgical tasks</title><title>Journal of robotic surgery</title><addtitle>J Robotic Surg</addtitle><addtitle>J Robot Surg</addtitle><description>To establish the design requirements for an MR-compatible haptic hand-controller, this paper measures magnitudes and frequency bands of three mechanical motion and interaction components during the performance of neurosurgical tasks on a cadaveric brain. The hand-controller would allow the performance of virtual neurosurgical tasks within the bore of a high field magnet during image acquisition, i.e., functional MRI. The components are the position and the orientation of a surgical tool, and the force interaction between the tool and the brain tissue. A bipolar forceps was retrofitted with a tracking system and a set of force sensing components to measure displacements and forces, respectively. Results showed working positional, rotational, and force frequency bands of 3, 3 and 5 Hz, respectively. Peak forces of 1.4, 2.9 and 3.0 N were measured in the Cartesian coordinate system. A workspace of 50.1 × 39.8 × 58.2 mm 3 and orientation ranges of 40.4°, 60.1° and 63.1° for azimuth, elevation, and roll angles were observed. The results contribute in providing information specific to neurosurgery that can be used to effectively design a compact and customized haptic hand-controller reflecting characteristics of neurosurgical tasks.</description><subject>Biomechanical Phenomena</subject><subject>Brain</subject><subject>Cadaver</subject><subject>Cartesian coordinates</subject><subject>Controllers</subject><subject>Design of experiments</subject><subject>Equipment Design</subject><subject>Fourier transforms</subject><subject>Frequencies</subject><subject>Hand</subject><subject>Haptics</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Interfaces</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical instruments</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Minimally Invasive Surgery</subject><subject>Movement</subject><subject>Neurosurgery</subject><subject>Neurosurgical Procedures - instrumentation</subject><subject>Original Article</subject><subject>Retrofitting</subject><subject>Robotic Surgical Procedures - instrumentation</subject><subject>Strain gauges</subject><subject>Surgeons</subject><subject>Surgery</subject><subject>Surgical apparatus &amp; instruments</subject><subject>Surgical Instruments</subject><subject>Tracking systems</subject><subject>Transmitters</subject><subject>Urology</subject><subject>Virtual reality</subject><subject>Workplace</subject><issn>1863-2483</issn><issn>1863-2491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMo7rr6A7xIwYuX6kyaNO1RRFdhQQQ9h2yaLF276Zq0h_33pnRdQZAcJjDfvJn3CLlEuEUAcRcQBWAKmKfAc0zZEZlikWcpZSUeH_5FNiFnIawBuOAZnpIJzUtkOccpmb_1ynW13dVuldjWa5MoVyXbNtRd3TrVJNabr944vUuWsROS2iXO9L4NvV_VOgKdCp_hnJxY1QRzsa8z8vH0-P7wnC5e5y8P94tUZ4J2KauGV1CbMcMqUFoh5bmiAoqlAF4WWUmt5iUUQA1YjpZypniutTGVqFg2Izej7ta38azQyU0dtGka5UzbB4miBKDRXB7R6z_ouu19tBQkLbEQyCnjkcKR0tFS8MbKra83yu8kghxSlmPKMqYsh5TlcMTVXrlfbkx1mPiJNQJ0BEJsuZXxv6v_V_0Gp8iGqw</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Maddahi, Yaser</creator><creator>Ghasemloonia, Ahmad</creator><creator>Zareinia, Kourosh</creator><creator>Sepehri, Nariman</creator><creator>Sutherland, Garnette R.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5180-782X</orcidid></search><sort><creationdate>20160601</creationdate><title>Quantifying force and positional frequency bands in neurosurgical tasks</title><author>Maddahi, Yaser ; Ghasemloonia, Ahmad ; Zareinia, Kourosh ; Sepehri, Nariman ; Sutherland, Garnette R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4d4d4d82f34e4d0aca1256a2708b70598392fc590802e0f51f254a56cceed7d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomechanical Phenomena</topic><topic>Brain</topic><topic>Cadaver</topic><topic>Cartesian coordinates</topic><topic>Controllers</topic><topic>Design of experiments</topic><topic>Equipment Design</topic><topic>Fourier transforms</topic><topic>Frequencies</topic><topic>Hand</topic><topic>Haptics</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Interfaces</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical instruments</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Minimally Invasive Surgery</topic><topic>Movement</topic><topic>Neurosurgery</topic><topic>Neurosurgical Procedures - instrumentation</topic><topic>Original Article</topic><topic>Retrofitting</topic><topic>Robotic Surgical Procedures - instrumentation</topic><topic>Strain gauges</topic><topic>Surgeons</topic><topic>Surgery</topic><topic>Surgical apparatus &amp; instruments</topic><topic>Surgical Instruments</topic><topic>Tracking systems</topic><topic>Transmitters</topic><topic>Urology</topic><topic>Virtual reality</topic><topic>Workplace</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maddahi, Yaser</creatorcontrib><creatorcontrib>Ghasemloonia, Ahmad</creatorcontrib><creatorcontrib>Zareinia, Kourosh</creatorcontrib><creatorcontrib>Sepehri, Nariman</creatorcontrib><creatorcontrib>Sutherland, Garnette R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of robotic surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maddahi, Yaser</au><au>Ghasemloonia, Ahmad</au><au>Zareinia, Kourosh</au><au>Sepehri, Nariman</au><au>Sutherland, Garnette R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying force and positional frequency bands in neurosurgical tasks</atitle><jtitle>Journal of robotic surgery</jtitle><stitle>J Robotic Surg</stitle><addtitle>J Robot Surg</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>10</volume><issue>2</issue><spage>97</spage><epage>102</epage><pages>97-102</pages><issn>1863-2483</issn><eissn>1863-2491</eissn><abstract>To establish the design requirements for an MR-compatible haptic hand-controller, this paper measures magnitudes and frequency bands of three mechanical motion and interaction components during the performance of neurosurgical tasks on a cadaveric brain. The hand-controller would allow the performance of virtual neurosurgical tasks within the bore of a high field magnet during image acquisition, i.e., functional MRI. The components are the position and the orientation of a surgical tool, and the force interaction between the tool and the brain tissue. A bipolar forceps was retrofitted with a tracking system and a set of force sensing components to measure displacements and forces, respectively. Results showed working positional, rotational, and force frequency bands of 3, 3 and 5 Hz, respectively. Peak forces of 1.4, 2.9 and 3.0 N were measured in the Cartesian coordinate system. A workspace of 50.1 × 39.8 × 58.2 mm 3 and orientation ranges of 40.4°, 60.1° and 63.1° for azimuth, elevation, and roll angles were observed. The results contribute in providing information specific to neurosurgery that can be used to effectively design a compact and customized haptic hand-controller reflecting characteristics of neurosurgical tasks.</abstract><cop>London</cop><pub>Springer London</pub><pmid>26914651</pmid><doi>10.1007/s11701-016-0561-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5180-782X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-2483
ispartof Journal of robotic surgery, 2016-06, Vol.10 (2), p.97-102
issn 1863-2483
1863-2491
language eng
recordid cdi_proquest_miscellaneous_1790021466
source Springer Nature
subjects Biomechanical Phenomena
Brain
Cadaver
Cartesian coordinates
Controllers
Design of experiments
Equipment Design
Fourier transforms
Frequencies
Hand
Haptics
Humans
Image acquisition
Interfaces
Magnetic Resonance Imaging
Medical instruments
Medicine
Medicine & Public Health
Minimally Invasive Surgery
Movement
Neurosurgery
Neurosurgical Procedures - instrumentation
Original Article
Retrofitting
Robotic Surgical Procedures - instrumentation
Strain gauges
Surgeons
Surgery
Surgical apparatus & instruments
Surgical Instruments
Tracking systems
Transmitters
Urology
Virtual reality
Workplace
title Quantifying force and positional frequency bands in neurosurgical tasks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20force%20and%20positional%20frequency%20bands%20in%20neurosurgical%20tasks&rft.jtitle=Journal%20of%20robotic%20surgery&rft.au=Maddahi,%20Yaser&rft.date=2016-06-01&rft.volume=10&rft.issue=2&rft.spage=97&rft.epage=102&rft.pages=97-102&rft.issn=1863-2483&rft.eissn=1863-2491&rft_id=info:doi/10.1007/s11701-016-0561-4&rft_dat=%3Cproquest_cross%3E2918715245%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-4d4d4d82f34e4d0aca1256a2708b70598392fc590802e0f51f254a56cceed7d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918715245&rft_id=info:pmid/26914651&rfr_iscdi=true