Loading…
Fast Appearance Modeling for Automatic Primary Video Object Segmentation
Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the...
Saved in:
Published in: | IEEE transactions on image processing 2016-02, Vol.25 (2), p.503-515 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3 |
container_end_page | 515 |
container_issue | 2 |
container_start_page | 503 |
container_title | IEEE transactions on image processing |
container_volume | 25 |
creator | Jiong Yang Price, Brian Xiaohui Shen Zhe Lin Junsong Yuan |
description | Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness. |
doi_str_mv | 10.1109/TIP.2015.2500820 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790454460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7328700</ieee_id><sourcerecordid>1825570216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRrFbvgiA5ekmd3cxmN8dSrC1UWrB6DZvNpKTko2aTg__elNRePc3APO8L8zD2wGHCOUQv2-VmIoDLiZAAWsAFu-ERch8AxWW_g1S-4hiN2K1zewCOkofXbCRCqREjfsMWc-Nab3o4kGlMZcl7r1Mq8mrnZXXjTbu2Lk2bW2_T5KVpfryvPKXaWyd7sq33QbuSqrYH6uqOXWWmcHR_mmP2OX_dzhb-av22nE1Xvg2kaH0UCWbSolQJgEiDMEm0NppnFBihOSERaVQ9YhOhEAJLoQ11aBADYSUFY_Y89B6a-rsj18Zl7iwVhamo7lzMtZBSgeDh_6iKACViCD0KA2qb2rmGsvgwPBxziI-q4151fFQdn1T3kadTe5eUlJ4Df2574HEA8v6n81kFQiuA4BdPO4EH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790454460</pqid></control><display><type>article</type><title>Fast Appearance Modeling for Automatic Primary Video Object Segmentation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiong Yang ; Price, Brian ; Xiaohui Shen ; Zhe Lin ; Junsong Yuan</creator><creatorcontrib>Jiong Yang ; Price, Brian ; Xiaohui Shen ; Zhe Lin ; Junsong Yuan</creatorcontrib><description>Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2500820</identifier><identifier>PMID: 26584491</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; appearance modeling ; automatic ; Automation ; Consumption ; Fields (mathematics) ; graph cut ; Graph theory ; Image segmentation ; Iterative methods ; Markov random fields ; Modelling ; Motion segmentation ; object ; Object segmentation ; Optimization ; primary ; Proposals ; Segmentation ; Transaction processing ; video</subject><ispartof>IEEE transactions on image processing, 2016-02, Vol.25 (2), p.503-515</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3</citedby><cites>FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7328700$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26584491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiong Yang</creatorcontrib><creatorcontrib>Price, Brian</creatorcontrib><creatorcontrib>Xiaohui Shen</creatorcontrib><creatorcontrib>Zhe Lin</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><title>Fast Appearance Modeling for Automatic Primary Video Object Segmentation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.</description><subject>Adaptation models</subject><subject>appearance modeling</subject><subject>automatic</subject><subject>Automation</subject><subject>Consumption</subject><subject>Fields (mathematics)</subject><subject>graph cut</subject><subject>Graph theory</subject><subject>Image segmentation</subject><subject>Iterative methods</subject><subject>Markov random fields</subject><subject>Modelling</subject><subject>Motion segmentation</subject><subject>object</subject><subject>Object segmentation</subject><subject>Optimization</subject><subject>primary</subject><subject>Proposals</subject><subject>Segmentation</subject><subject>Transaction processing</subject><subject>video</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRrFbvgiA5ekmd3cxmN8dSrC1UWrB6DZvNpKTko2aTg__elNRePc3APO8L8zD2wGHCOUQv2-VmIoDLiZAAWsAFu-ERch8AxWW_g1S-4hiN2K1zewCOkofXbCRCqREjfsMWc-Nab3o4kGlMZcl7r1Mq8mrnZXXjTbu2Lk2bW2_T5KVpfryvPKXaWyd7sq33QbuSqrYH6uqOXWWmcHR_mmP2OX_dzhb-av22nE1Xvg2kaH0UCWbSolQJgEiDMEm0NppnFBihOSERaVQ9YhOhEAJLoQ11aBADYSUFY_Y89B6a-rsj18Zl7iwVhamo7lzMtZBSgeDh_6iKACViCD0KA2qb2rmGsvgwPBxziI-q4151fFQdn1T3kadTe5eUlJ4Df2574HEA8v6n81kFQiuA4BdPO4EH</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Jiong Yang</creator><creator>Price, Brian</creator><creator>Xiaohui Shen</creator><creator>Zhe Lin</creator><creator>Junsong Yuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201602</creationdate><title>Fast Appearance Modeling for Automatic Primary Video Object Segmentation</title><author>Jiong Yang ; Price, Brian ; Xiaohui Shen ; Zhe Lin ; Junsong Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>appearance modeling</topic><topic>automatic</topic><topic>Automation</topic><topic>Consumption</topic><topic>Fields (mathematics)</topic><topic>graph cut</topic><topic>Graph theory</topic><topic>Image segmentation</topic><topic>Iterative methods</topic><topic>Markov random fields</topic><topic>Modelling</topic><topic>Motion segmentation</topic><topic>object</topic><topic>Object segmentation</topic><topic>Optimization</topic><topic>primary</topic><topic>Proposals</topic><topic>Segmentation</topic><topic>Transaction processing</topic><topic>video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiong Yang</creatorcontrib><creatorcontrib>Price, Brian</creatorcontrib><creatorcontrib>Xiaohui Shen</creatorcontrib><creatorcontrib>Zhe Lin</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiong Yang</au><au>Price, Brian</au><au>Xiaohui Shen</au><au>Zhe Lin</au><au>Junsong Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Appearance Modeling for Automatic Primary Video Object Segmentation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-02</date><risdate>2016</risdate><volume>25</volume><issue>2</issue><spage>503</spage><epage>515</epage><pages>503-515</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26584491</pmid><doi>10.1109/TIP.2015.2500820</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2016-02, Vol.25 (2), p.503-515 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1790454460 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models appearance modeling automatic Automation Consumption Fields (mathematics) graph cut Graph theory Image segmentation Iterative methods Markov random fields Modelling Motion segmentation object Object segmentation Optimization primary Proposals Segmentation Transaction processing video |
title | Fast Appearance Modeling for Automatic Primary Video Object Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Appearance%20Modeling%20for%20Automatic%20Primary%20Video%20Object%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Jiong%20Yang&rft.date=2016-02&rft.volume=25&rft.issue=2&rft.spage=503&rft.epage=515&rft.pages=503-515&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2500820&rft_dat=%3Cproquest_cross%3E1825570216%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1790454460&rft_id=info:pmid/26584491&rft_ieee_id=7328700&rfr_iscdi=true |