Loading…

Fast Appearance Modeling for Automatic Primary Video Object Segmentation

Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2016-02, Vol.25 (2), p.503-515
Main Authors: Jiong Yang, Price, Brian, Xiaohui Shen, Zhe Lin, Junsong Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3
cites cdi_FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3
container_end_page 515
container_issue 2
container_start_page 503
container_title IEEE transactions on image processing
container_volume 25
creator Jiong Yang
Price, Brian
Xiaohui Shen
Zhe Lin
Junsong Yuan
description Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.
doi_str_mv 10.1109/TIP.2015.2500820
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790454460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7328700</ieee_id><sourcerecordid>1825570216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRrFbvgiA5ekmd3cxmN8dSrC1UWrB6DZvNpKTko2aTg__elNRePc3APO8L8zD2wGHCOUQv2-VmIoDLiZAAWsAFu-ERch8AxWW_g1S-4hiN2K1zewCOkofXbCRCqREjfsMWc-Nab3o4kGlMZcl7r1Mq8mrnZXXjTbu2Lk2bW2_T5KVpfryvPKXaWyd7sq33QbuSqrYH6uqOXWWmcHR_mmP2OX_dzhb-av22nE1Xvg2kaH0UCWbSolQJgEiDMEm0NppnFBihOSERaVQ9YhOhEAJLoQ11aBADYSUFY_Y89B6a-rsj18Zl7iwVhamo7lzMtZBSgeDh_6iKACViCD0KA2qb2rmGsvgwPBxziI-q4151fFQdn1T3kadTe5eUlJ4Df2574HEA8v6n81kFQiuA4BdPO4EH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790454460</pqid></control><display><type>article</type><title>Fast Appearance Modeling for Automatic Primary Video Object Segmentation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jiong Yang ; Price, Brian ; Xiaohui Shen ; Zhe Lin ; Junsong Yuan</creator><creatorcontrib>Jiong Yang ; Price, Brian ; Xiaohui Shen ; Zhe Lin ; Junsong Yuan</creatorcontrib><description>Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2500820</identifier><identifier>PMID: 26584491</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; appearance modeling ; automatic ; Automation ; Consumption ; Fields (mathematics) ; graph cut ; Graph theory ; Image segmentation ; Iterative methods ; Markov random fields ; Modelling ; Motion segmentation ; object ; Object segmentation ; Optimization ; primary ; Proposals ; Segmentation ; Transaction processing ; video</subject><ispartof>IEEE transactions on image processing, 2016-02, Vol.25 (2), p.503-515</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3</citedby><cites>FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7328700$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26584491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiong Yang</creatorcontrib><creatorcontrib>Price, Brian</creatorcontrib><creatorcontrib>Xiaohui Shen</creatorcontrib><creatorcontrib>Zhe Lin</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><title>Fast Appearance Modeling for Automatic Primary Video Object Segmentation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.</description><subject>Adaptation models</subject><subject>appearance modeling</subject><subject>automatic</subject><subject>Automation</subject><subject>Consumption</subject><subject>Fields (mathematics)</subject><subject>graph cut</subject><subject>Graph theory</subject><subject>Image segmentation</subject><subject>Iterative methods</subject><subject>Markov random fields</subject><subject>Modelling</subject><subject>Motion segmentation</subject><subject>object</subject><subject>Object segmentation</subject><subject>Optimization</subject><subject>primary</subject><subject>Proposals</subject><subject>Segmentation</subject><subject>Transaction processing</subject><subject>video</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRrFbvgiA5ekmd3cxmN8dSrC1UWrB6DZvNpKTko2aTg__elNRePc3APO8L8zD2wGHCOUQv2-VmIoDLiZAAWsAFu-ERch8AxWW_g1S-4hiN2K1zewCOkofXbCRCqREjfsMWc-Nab3o4kGlMZcl7r1Mq8mrnZXXjTbu2Lk2bW2_T5KVpfryvPKXaWyd7sq33QbuSqrYH6uqOXWWmcHR_mmP2OX_dzhb-av22nE1Xvg2kaH0UCWbSolQJgEiDMEm0NppnFBihOSERaVQ9YhOhEAJLoQ11aBADYSUFY_Y89B6a-rsj18Zl7iwVhamo7lzMtZBSgeDh_6iKACViCD0KA2qb2rmGsvgwPBxziI-q4151fFQdn1T3kadTe5eUlJ4Df2574HEA8v6n81kFQiuA4BdPO4EH</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Jiong Yang</creator><creator>Price, Brian</creator><creator>Xiaohui Shen</creator><creator>Zhe Lin</creator><creator>Junsong Yuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201602</creationdate><title>Fast Appearance Modeling for Automatic Primary Video Object Segmentation</title><author>Jiong Yang ; Price, Brian ; Xiaohui Shen ; Zhe Lin ; Junsong Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>appearance modeling</topic><topic>automatic</topic><topic>Automation</topic><topic>Consumption</topic><topic>Fields (mathematics)</topic><topic>graph cut</topic><topic>Graph theory</topic><topic>Image segmentation</topic><topic>Iterative methods</topic><topic>Markov random fields</topic><topic>Modelling</topic><topic>Motion segmentation</topic><topic>object</topic><topic>Object segmentation</topic><topic>Optimization</topic><topic>primary</topic><topic>Proposals</topic><topic>Segmentation</topic><topic>Transaction processing</topic><topic>video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiong Yang</creatorcontrib><creatorcontrib>Price, Brian</creatorcontrib><creatorcontrib>Xiaohui Shen</creatorcontrib><creatorcontrib>Zhe Lin</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiong Yang</au><au>Price, Brian</au><au>Xiaohui Shen</au><au>Zhe Lin</au><au>Junsong Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Appearance Modeling for Automatic Primary Video Object Segmentation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-02</date><risdate>2016</risdate><volume>25</volume><issue>2</issue><spage>503</spage><epage>515</epage><pages>503-515</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26584491</pmid><doi>10.1109/TIP.2015.2500820</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2016-02, Vol.25 (2), p.503-515
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1790454460
source IEEE Electronic Library (IEL) Journals
subjects Adaptation models
appearance modeling
automatic
Automation
Consumption
Fields (mathematics)
graph cut
Graph theory
Image segmentation
Iterative methods
Markov random fields
Modelling
Motion segmentation
object
Object segmentation
Optimization
primary
Proposals
Segmentation
Transaction processing
video
title Fast Appearance Modeling for Automatic Primary Video Object Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Appearance%20Modeling%20for%20Automatic%20Primary%20Video%20Object%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Jiong%20Yang&rft.date=2016-02&rft.volume=25&rft.issue=2&rft.spage=503&rft.epage=515&rft.pages=503-515&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2500820&rft_dat=%3Cproquest_cross%3E1825570216%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-42b4f5c457b002d36bb88a81fe3a281e4eee847f5ccb27403ce6c686a4432c5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1790454460&rft_id=info:pmid/26584491&rft_ieee_id=7328700&rfr_iscdi=true