Loading…

Eel green fluorescent protein is associated with resistance to oxidative stress

Green fluorescent protein (GFP) from eel (Anguilla japonica) muscle (eelGFP) is unique in the vertebrates and requires bilirubin as a ligand to emit fluorescence. This study was performed to clarify the physiological function of the unique GFP. Investigation of susceptibility to oxidative stress was...

Full description

Saved in:
Bibliographic Details
Published in:Comparative biochemistry and physiology. Toxicology & pharmacology 2016-03, Vol.181-182, p.35-39
Main Authors: Funahashi, Aki, Komatsu, Masaharu, Furukawa, Tatsuhiko, Yoshizono, Yuki, Yoshizono, Hikari, Orikawa, Yasuhiro, Takumi, Shota, Shiozaki, Kazuhiro, Hayashi, Seiichi, Kaminishi, Yoshio, Itakura, Takao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Green fluorescent protein (GFP) from eel (Anguilla japonica) muscle (eelGFP) is unique in the vertebrates and requires bilirubin as a ligand to emit fluorescence. This study was performed to clarify the physiological function of the unique GFP. Investigation of susceptibility to oxidative stress was carried out using three types of cell lines including jellyfish (Aequorea coerulescens) GFP (jfGFP)-, or eel GFP (eelGFP)-expressing HEK293 cells, and control vector-transfected HEK293 cells. Binding of eelGFP to bilirubin was confirmed by the observation of green fluorescence in HEK293-eelGFP cells. The growth rate was compared with the three types of cells in the presence or absence of phenol red which possessed antioxidant activity. The growth rates of HEK293-CV and HEK293-jfGFP under phenol red-free conditions were reduced to 52 and 31% of those under phenol red. Under the phenol red-free condition, HEK293-eelGFP had a growth rate of approximately 70% of the phenol red-containing condition. The eelGFP-expressing cells were approximately 2-fold resistant to oxidative stress such as H2O2 exposure. The fluorescence intensity partially decreased or disappeared after exposure to H2O2, and heterogeneous intensity of fluorescence was also observed in isolated eel skeletal muscle cells. These results suggested eelGFP, but not jfGFP, coupled with bilirubin provided the antioxidant activity to the cells as compared to non-bound free bilirubin.
ISSN:1532-0456
1878-1659
DOI:10.1016/j.cbpc.2015.12.009