Loading…

Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables

Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Pr...

Full description

Saved in:
Bibliographic Details
Published in:Metabolic engineering 2016-05, Vol.35, p.105-113
Main Authors: Tan, Zaigao, Yoon, Jong Moon, Nielsen, David R., Shanks, Jacqueline V., Jarboe, Laura R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio–product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. •TUFA production significantly improves tolerance and production of carboxylic acids.•TUFA production significantly improves tolerance and production of styrene.•Tuning of the TUFA relative abundance impacts effectiveness.•TUFA production increases membrane rigidity, does not impact membrane integrity.•TUFA production improves thermotolerance, growth at pH 5.5 and butanol tolerance.
ISSN:1096-7176
1096-7184
DOI:10.1016/j.ymben.2016.02.004