Loading…

A Novel Mechanism of Nuclear Photosynthesis Gene Regulation by Redox Signals from the Chloroplast during Photosystem Stoichiometry Adjustment

Photosynthetic organisms acclimate to long term changes in the environmental light quality by an adjustment of their photosystem stoichiometry to maintain photosynthetic efficiency. By using light sources that predominantly excite either photosystem I (PSI) or photosystem II (PSII), we studied the e...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2001-09, Vol.276 (39), p.36125-36130
Main Authors: Pfannschmidt, Thomas, Schütze, Katia, Brost, Meta, Oelmüller, Ralf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photosynthetic organisms acclimate to long term changes in the environmental light quality by an adjustment of their photosystem stoichiometry to maintain photosynthetic efficiency. By using light sources that predominantly excite either photosystem I (PSI) or photosystem II (PSII), we studied the effects of excitation imbalances between both photosystems on nuclear PSI gene transcription in transgenic tobacco seedlings with promoter::β-glucuronidase gene fusions. Shifts from PSI to PSII light sources (and vice versa) induced changes in the reduction/oxidation state of intersystem redox components, and acclimation of tobacco seedlings to such changes were monitored by changes in chlorophyll a/b ratios andin vivo chlorophyll a fluorescence. The ferredoxin-NADP+-oxidoreductase gene promoter did not respond to these treatments, those from the genes for subunits PsaD and PsaF of PSI are activated by a reduction signal, and the plastocyanin promoter responded to both reduction and oxidation signals. Additional experiments with photosynthetic electron transport inhibitors 3-(3′,4′-dichlorophenyl)-1,1′-dimethyl urea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone demonstrated that the redox state of the plastoquinone pool controls the activity of the plastocyanin promoter, whereas subunit PsaD and PsaF gene transcription is regulated by other photosynthesis-derived signals. Thus, the expression of nuclear-encoded PSI genes is controlled by diverse light quality-dependent redox signals from the plastids during photosystem stoichiometry adjustment.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M105701200