Loading…

Nitric oxide differentially affects proteasome activator 28 after arterial injury in type 1 and type 2 diabetic rats

Abstract Background Diabetic patients display aggressive restenosis after vascular interventions, likely because of proproliferative influences of hyperglycemia and hyperinsulinemia. We have shown that nitric oxide (NO) inhibits neointimal hyperplasia in type 2, but not in type 1, diabetic rats. Her...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of surgical research 2016-05, Vol.202 (2), p.413-421
Main Authors: Tsihlis, Nick D., PhD, Rodriguez, Monica P., MD, Jiang, Qun, MD, Schwartz, Amanda, BA, Flynn, Megan E., MS, Vercammen, Janet M., AAS, Kibbe, Melina R., MD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-2fd42834a84fdea4985b0fa78e0dbfa40290feea4fcd2b9894e4d4bcddf34ae13
cites cdi_FETCH-LOGICAL-c451t-2fd42834a84fdea4985b0fa78e0dbfa40290feea4fcd2b9894e4d4bcddf34ae13
container_end_page 421
container_issue 2
container_start_page 413
container_title The Journal of surgical research
container_volume 202
creator Tsihlis, Nick D., PhD
Rodriguez, Monica P., MD
Jiang, Qun, MD
Schwartz, Amanda, BA
Flynn, Megan E., MS
Vercammen, Janet M., AAS
Kibbe, Melina R., MD
description Abstract Background Diabetic patients display aggressive restenosis after vascular interventions, likely because of proproliferative influences of hyperglycemia and hyperinsulinemia. We have shown that nitric oxide (NO) inhibits neointimal hyperplasia in type 2, but not in type 1, diabetic rats. Here, we examined proteasome activator 28 (PA28) after arterial injury in different diabetic environments, with or without NO. We hypothesize that NO differentially affects PA28 levels based on metabolic environment. Materials and methods Vascular smooth muscle cell (VSMC) lysates from male, nondiabetic Lean Zucker (LZ) and Zucker Diabetic Fatty (ZDF) rats were assayed for 26S proteasome activity with or without PA28 and S-nitroso-N-acetylpenicillamine. LZ and ZDF VSMCs were treated with (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate for 24 h. Balloon-injured carotid arteries from LZ, streptozotocin-injected LZ (STZ, type 1), and ZDF (type 2) rats treated with disodium 1-[2-(carboxylato)pyrrolidin-1-iyl]diazen-1-ium-1,2-diolate were harvested at 3 or 14 d. PA28α was assessed by Western blotting and immunofluorescent staining. Results S-nitroso-N-acetylpenicillamine reversed PA28-stimulated increases in 26S proteasome activity in LZ and ZDF VSMCs. Increased (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate lowered PA28α in LZ VSMCs but increased PA28α in ZDF VSMCs. At 3 d after injury, disodium 1-[2-(carboxylato)pyrrolidin-1-iyl]diazen-1-ium-1,2-diolate potentiated injury-induced PA28α decreases in LZ, STZ, and ZDF rats, suggesting VSMCs, depleted at this early time point, are major sources of PA28α. At 14 d after injury, total PA28α staining returned to baseline. However, although intimal and medial PA28α staining increased in injured STZ rats, adventitial PA28α staining increased in injured ZDF rats. Conclusions PA28 dysregulation may explain the differential ability of NO to inhibit neointimal hyperplasia in type 1 versus type 2 diabetes.
doi_str_mv 10.1016/j.jss.2016.01.030
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1792370318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0022480416000500</els_id><sourcerecordid>1792370318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-2fd42834a84fdea4985b0fa78e0dbfa40290feea4fcd2b9894e4d4bcddf34ae13</originalsourceid><addsrcrecordid>eNp9UcFu1DAQtVAR3RY-gAvykUvC2PFuHCEhVRW0lSo4AGfLsceSQzZZbKcif8-stvTAoRfPjOa9Z703jL0VUAsQuw9DPeRcS2prEDU08IJtBHTbSu_a5oxtAKSslAZ1zi5yHoDmrm1esXPZStkJ0W5Y-RpLio7Pf6JH7mMImHAq0Y7jyi1NrmR-SHNBm-c9cutKfLBlTlxq2hdM3CZ6icDjNCxppcLLekAuuJ38qZWkbHss9FGyJb9mL4MdM755rJfs55fPP65vq_tvN3fXV_eVU1tRKhm8krpRVqvg0apOb3sIttUIvg9WkRsISIvgvOw73SlUXvXO-0AkFM0le3_SJQO_F8zF7GN2OI52wnnJRrSdbFpohCaoOEFdmnNOGMwhxb1NqxFgjmGbwVDY5hi2AWEobOK8e5Rf-j36J8a_dAnw8QRAMvkQMZnsIk4OfUwUrPFzfFb-039sN8YpOjv-whXzMC9povSMMFkaMN-P1z4eW-zo0FuA5i_rTKZr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792370318</pqid></control><display><type>article</type><title>Nitric oxide differentially affects proteasome activator 28 after arterial injury in type 1 and type 2 diabetic rats</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Tsihlis, Nick D., PhD ; Rodriguez, Monica P., MD ; Jiang, Qun, MD ; Schwartz, Amanda, BA ; Flynn, Megan E., MS ; Vercammen, Janet M., AAS ; Kibbe, Melina R., MD</creator><creatorcontrib>Tsihlis, Nick D., PhD ; Rodriguez, Monica P., MD ; Jiang, Qun, MD ; Schwartz, Amanda, BA ; Flynn, Megan E., MS ; Vercammen, Janet M., AAS ; Kibbe, Melina R., MD</creatorcontrib><description>Abstract Background Diabetic patients display aggressive restenosis after vascular interventions, likely because of proproliferative influences of hyperglycemia and hyperinsulinemia. We have shown that nitric oxide (NO) inhibits neointimal hyperplasia in type 2, but not in type 1, diabetic rats. Here, we examined proteasome activator 28 (PA28) after arterial injury in different diabetic environments, with or without NO. We hypothesize that NO differentially affects PA28 levels based on metabolic environment. Materials and methods Vascular smooth muscle cell (VSMC) lysates from male, nondiabetic Lean Zucker (LZ) and Zucker Diabetic Fatty (ZDF) rats were assayed for 26S proteasome activity with or without PA28 and S-nitroso-N-acetylpenicillamine. LZ and ZDF VSMCs were treated with (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate for 24 h. Balloon-injured carotid arteries from LZ, streptozotocin-injected LZ (STZ, type 1), and ZDF (type 2) rats treated with disodium 1-[2-(carboxylato)pyrrolidin-1-iyl]diazen-1-ium-1,2-diolate were harvested at 3 or 14 d. PA28α was assessed by Western blotting and immunofluorescent staining. Results S-nitroso-N-acetylpenicillamine reversed PA28-stimulated increases in 26S proteasome activity in LZ and ZDF VSMCs. Increased (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate lowered PA28α in LZ VSMCs but increased PA28α in ZDF VSMCs. At 3 d after injury, disodium 1-[2-(carboxylato)pyrrolidin-1-iyl]diazen-1-ium-1,2-diolate potentiated injury-induced PA28α decreases in LZ, STZ, and ZDF rats, suggesting VSMCs, depleted at this early time point, are major sources of PA28α. At 14 d after injury, total PA28α staining returned to baseline. However, although intimal and medial PA28α staining increased in injured STZ rats, adventitial PA28α staining increased in injured ZDF rats. Conclusions PA28 dysregulation may explain the differential ability of NO to inhibit neointimal hyperplasia in type 1 versus type 2 diabetes.</description><identifier>ISSN: 0022-4804</identifier><identifier>EISSN: 1095-8673</identifier><identifier>DOI: 10.1016/j.jss.2016.01.030</identifier><identifier>PMID: 27229117</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biomarkers - metabolism ; Carotid Arteries - drug effects ; Carotid Arteries - enzymology ; Carotid Arteries - pathology ; Carotid Artery Injuries - complications ; Carotid Artery Injuries - drug therapy ; Carotid Artery Injuries - enzymology ; Diabetes ; Diabetes Mellitus, Experimental - complications ; Diabetes Mellitus, Experimental - enzymology ; Diabetes Mellitus, Type 1 - complications ; Diabetes Mellitus, Type 1 - enzymology ; Diabetes Mellitus, Type 2 - complications ; Diabetes Mellitus, Type 2 - enzymology ; Hyperplasia - etiology ; Hyperplasia - prevention &amp; control ; Male ; Muscle, Smooth, Vascular - cytology ; Muscle, Smooth, Vascular - drug effects ; Muscle, Smooth, Vascular - enzymology ; Muscle, Smooth, Vascular - pathology ; Myocytes, Smooth Muscle - drug effects ; Myocytes, Smooth Muscle - enzymology ; Myocytes, Smooth Muscle - pathology ; Neointima - enzymology ; Neointima - etiology ; Neointima - pathology ; Neointima - prevention &amp; control ; Neointimal hyperplasia ; Nitric oxide ; Nitric Oxide - pharmacology ; Nitric Oxide - therapeutic use ; Oxidative Stress - drug effects ; Proteasome ; Proteasome Endopeptidase Complex - metabolism ; Protective Agents - pharmacology ; Protective Agents - therapeutic use ; Rats ; Rats, Zucker ; Surgery ; Treatment Outcome</subject><ispartof>The Journal of surgical research, 2016-05, Vol.202 (2), p.413-421</ispartof><rights>Elsevier Inc.</rights><rights>2016</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-2fd42834a84fdea4985b0fa78e0dbfa40290feea4fcd2b9894e4d4bcddf34ae13</citedby><cites>FETCH-LOGICAL-c451t-2fd42834a84fdea4985b0fa78e0dbfa40290feea4fcd2b9894e4d4bcddf34ae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27229117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsihlis, Nick D., PhD</creatorcontrib><creatorcontrib>Rodriguez, Monica P., MD</creatorcontrib><creatorcontrib>Jiang, Qun, MD</creatorcontrib><creatorcontrib>Schwartz, Amanda, BA</creatorcontrib><creatorcontrib>Flynn, Megan E., MS</creatorcontrib><creatorcontrib>Vercammen, Janet M., AAS</creatorcontrib><creatorcontrib>Kibbe, Melina R., MD</creatorcontrib><title>Nitric oxide differentially affects proteasome activator 28 after arterial injury in type 1 and type 2 diabetic rats</title><title>The Journal of surgical research</title><addtitle>J Surg Res</addtitle><description>Abstract Background Diabetic patients display aggressive restenosis after vascular interventions, likely because of proproliferative influences of hyperglycemia and hyperinsulinemia. We have shown that nitric oxide (NO) inhibits neointimal hyperplasia in type 2, but not in type 1, diabetic rats. Here, we examined proteasome activator 28 (PA28) after arterial injury in different diabetic environments, with or without NO. We hypothesize that NO differentially affects PA28 levels based on metabolic environment. Materials and methods Vascular smooth muscle cell (VSMC) lysates from male, nondiabetic Lean Zucker (LZ) and Zucker Diabetic Fatty (ZDF) rats were assayed for 26S proteasome activity with or without PA28 and S-nitroso-N-acetylpenicillamine. LZ and ZDF VSMCs were treated with (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate for 24 h. Balloon-injured carotid arteries from LZ, streptozotocin-injected LZ (STZ, type 1), and ZDF (type 2) rats treated with disodium 1-[2-(carboxylato)pyrrolidin-1-iyl]diazen-1-ium-1,2-diolate were harvested at 3 or 14 d. PA28α was assessed by Western blotting and immunofluorescent staining. Results S-nitroso-N-acetylpenicillamine reversed PA28-stimulated increases in 26S proteasome activity in LZ and ZDF VSMCs. Increased (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate lowered PA28α in LZ VSMCs but increased PA28α in ZDF VSMCs. At 3 d after injury, disodium 1-[2-(carboxylato)pyrrolidin-1-iyl]diazen-1-ium-1,2-diolate potentiated injury-induced PA28α decreases in LZ, STZ, and ZDF rats, suggesting VSMCs, depleted at this early time point, are major sources of PA28α. At 14 d after injury, total PA28α staining returned to baseline. However, although intimal and medial PA28α staining increased in injured STZ rats, adventitial PA28α staining increased in injured ZDF rats. Conclusions PA28 dysregulation may explain the differential ability of NO to inhibit neointimal hyperplasia in type 1 versus type 2 diabetes.</description><subject>Animals</subject><subject>Biomarkers - metabolism</subject><subject>Carotid Arteries - drug effects</subject><subject>Carotid Arteries - enzymology</subject><subject>Carotid Arteries - pathology</subject><subject>Carotid Artery Injuries - complications</subject><subject>Carotid Artery Injuries - drug therapy</subject><subject>Carotid Artery Injuries - enzymology</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Experimental - complications</subject><subject>Diabetes Mellitus, Experimental - enzymology</subject><subject>Diabetes Mellitus, Type 1 - complications</subject><subject>Diabetes Mellitus, Type 1 - enzymology</subject><subject>Diabetes Mellitus, Type 2 - complications</subject><subject>Diabetes Mellitus, Type 2 - enzymology</subject><subject>Hyperplasia - etiology</subject><subject>Hyperplasia - prevention &amp; control</subject><subject>Male</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscle, Smooth, Vascular - drug effects</subject><subject>Muscle, Smooth, Vascular - enzymology</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Myocytes, Smooth Muscle - drug effects</subject><subject>Myocytes, Smooth Muscle - enzymology</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>Neointima - enzymology</subject><subject>Neointima - etiology</subject><subject>Neointima - pathology</subject><subject>Neointima - prevention &amp; control</subject><subject>Neointimal hyperplasia</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - pharmacology</subject><subject>Nitric Oxide - therapeutic use</subject><subject>Oxidative Stress - drug effects</subject><subject>Proteasome</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Protective Agents - pharmacology</subject><subject>Protective Agents - therapeutic use</subject><subject>Rats</subject><subject>Rats, Zucker</subject><subject>Surgery</subject><subject>Treatment Outcome</subject><issn>0022-4804</issn><issn>1095-8673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1DAQtVAR3RY-gAvykUvC2PFuHCEhVRW0lSo4AGfLsceSQzZZbKcif8-stvTAoRfPjOa9Z703jL0VUAsQuw9DPeRcS2prEDU08IJtBHTbSu_a5oxtAKSslAZ1zi5yHoDmrm1esXPZStkJ0W5Y-RpLio7Pf6JH7mMImHAq0Y7jyi1NrmR-SHNBm-c9cutKfLBlTlxq2hdM3CZ6icDjNCxppcLLekAuuJ38qZWkbHss9FGyJb9mL4MdM755rJfs55fPP65vq_tvN3fXV_eVU1tRKhm8krpRVqvg0apOb3sIttUIvg9WkRsISIvgvOw73SlUXvXO-0AkFM0le3_SJQO_F8zF7GN2OI52wnnJRrSdbFpohCaoOEFdmnNOGMwhxb1NqxFgjmGbwVDY5hi2AWEobOK8e5Rf-j36J8a_dAnw8QRAMvkQMZnsIk4OfUwUrPFzfFb-039sN8YpOjv-whXzMC9povSMMFkaMN-P1z4eW-zo0FuA5i_rTKZr</recordid><startdate>20160515</startdate><enddate>20160515</enddate><creator>Tsihlis, Nick D., PhD</creator><creator>Rodriguez, Monica P., MD</creator><creator>Jiang, Qun, MD</creator><creator>Schwartz, Amanda, BA</creator><creator>Flynn, Megan E., MS</creator><creator>Vercammen, Janet M., AAS</creator><creator>Kibbe, Melina R., MD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160515</creationdate><title>Nitric oxide differentially affects proteasome activator 28 after arterial injury in type 1 and type 2 diabetic rats</title><author>Tsihlis, Nick D., PhD ; Rodriguez, Monica P., MD ; Jiang, Qun, MD ; Schwartz, Amanda, BA ; Flynn, Megan E., MS ; Vercammen, Janet M., AAS ; Kibbe, Melina R., MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-2fd42834a84fdea4985b0fa78e0dbfa40290feea4fcd2b9894e4d4bcddf34ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biomarkers - metabolism</topic><topic>Carotid Arteries - drug effects</topic><topic>Carotid Arteries - enzymology</topic><topic>Carotid Arteries - pathology</topic><topic>Carotid Artery Injuries - complications</topic><topic>Carotid Artery Injuries - drug therapy</topic><topic>Carotid Artery Injuries - enzymology</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Experimental - complications</topic><topic>Diabetes Mellitus, Experimental - enzymology</topic><topic>Diabetes Mellitus, Type 1 - complications</topic><topic>Diabetes Mellitus, Type 1 - enzymology</topic><topic>Diabetes Mellitus, Type 2 - complications</topic><topic>Diabetes Mellitus, Type 2 - enzymology</topic><topic>Hyperplasia - etiology</topic><topic>Hyperplasia - prevention &amp; control</topic><topic>Male</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscle, Smooth, Vascular - drug effects</topic><topic>Muscle, Smooth, Vascular - enzymology</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Myocytes, Smooth Muscle - drug effects</topic><topic>Myocytes, Smooth Muscle - enzymology</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>Neointima - enzymology</topic><topic>Neointima - etiology</topic><topic>Neointima - pathology</topic><topic>Neointima - prevention &amp; control</topic><topic>Neointimal hyperplasia</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - pharmacology</topic><topic>Nitric Oxide - therapeutic use</topic><topic>Oxidative Stress - drug effects</topic><topic>Proteasome</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Protective Agents - pharmacology</topic><topic>Protective Agents - therapeutic use</topic><topic>Rats</topic><topic>Rats, Zucker</topic><topic>Surgery</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsihlis, Nick D., PhD</creatorcontrib><creatorcontrib>Rodriguez, Monica P., MD</creatorcontrib><creatorcontrib>Jiang, Qun, MD</creatorcontrib><creatorcontrib>Schwartz, Amanda, BA</creatorcontrib><creatorcontrib>Flynn, Megan E., MS</creatorcontrib><creatorcontrib>Vercammen, Janet M., AAS</creatorcontrib><creatorcontrib>Kibbe, Melina R., MD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of surgical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsihlis, Nick D., PhD</au><au>Rodriguez, Monica P., MD</au><au>Jiang, Qun, MD</au><au>Schwartz, Amanda, BA</au><au>Flynn, Megan E., MS</au><au>Vercammen, Janet M., AAS</au><au>Kibbe, Melina R., MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric oxide differentially affects proteasome activator 28 after arterial injury in type 1 and type 2 diabetic rats</atitle><jtitle>The Journal of surgical research</jtitle><addtitle>J Surg Res</addtitle><date>2016-05-15</date><risdate>2016</risdate><volume>202</volume><issue>2</issue><spage>413</spage><epage>421</epage><pages>413-421</pages><issn>0022-4804</issn><eissn>1095-8673</eissn><abstract>Abstract Background Diabetic patients display aggressive restenosis after vascular interventions, likely because of proproliferative influences of hyperglycemia and hyperinsulinemia. We have shown that nitric oxide (NO) inhibits neointimal hyperplasia in type 2, but not in type 1, diabetic rats. Here, we examined proteasome activator 28 (PA28) after arterial injury in different diabetic environments, with or without NO. We hypothesize that NO differentially affects PA28 levels based on metabolic environment. Materials and methods Vascular smooth muscle cell (VSMC) lysates from male, nondiabetic Lean Zucker (LZ) and Zucker Diabetic Fatty (ZDF) rats were assayed for 26S proteasome activity with or without PA28 and S-nitroso-N-acetylpenicillamine. LZ and ZDF VSMCs were treated with (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate for 24 h. Balloon-injured carotid arteries from LZ, streptozotocin-injected LZ (STZ, type 1), and ZDF (type 2) rats treated with disodium 1-[2-(carboxylato)pyrrolidin-1-iyl]diazen-1-ium-1,2-diolate were harvested at 3 or 14 d. PA28α was assessed by Western blotting and immunofluorescent staining. Results S-nitroso-N-acetylpenicillamine reversed PA28-stimulated increases in 26S proteasome activity in LZ and ZDF VSMCs. Increased (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate lowered PA28α in LZ VSMCs but increased PA28α in ZDF VSMCs. At 3 d after injury, disodium 1-[2-(carboxylato)pyrrolidin-1-iyl]diazen-1-ium-1,2-diolate potentiated injury-induced PA28α decreases in LZ, STZ, and ZDF rats, suggesting VSMCs, depleted at this early time point, are major sources of PA28α. At 14 d after injury, total PA28α staining returned to baseline. However, although intimal and medial PA28α staining increased in injured STZ rats, adventitial PA28α staining increased in injured ZDF rats. Conclusions PA28 dysregulation may explain the differential ability of NO to inhibit neointimal hyperplasia in type 1 versus type 2 diabetes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27229117</pmid><doi>10.1016/j.jss.2016.01.030</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4804
ispartof The Journal of surgical research, 2016-05, Vol.202 (2), p.413-421
issn 0022-4804
1095-8673
language eng
recordid cdi_proquest_miscellaneous_1792370318
source ScienceDirect Freedom Collection 2022-2024
subjects Animals
Biomarkers - metabolism
Carotid Arteries - drug effects
Carotid Arteries - enzymology
Carotid Arteries - pathology
Carotid Artery Injuries - complications
Carotid Artery Injuries - drug therapy
Carotid Artery Injuries - enzymology
Diabetes
Diabetes Mellitus, Experimental - complications
Diabetes Mellitus, Experimental - enzymology
Diabetes Mellitus, Type 1 - complications
Diabetes Mellitus, Type 1 - enzymology
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - enzymology
Hyperplasia - etiology
Hyperplasia - prevention & control
Male
Muscle, Smooth, Vascular - cytology
Muscle, Smooth, Vascular - drug effects
Muscle, Smooth, Vascular - enzymology
Muscle, Smooth, Vascular - pathology
Myocytes, Smooth Muscle - drug effects
Myocytes, Smooth Muscle - enzymology
Myocytes, Smooth Muscle - pathology
Neointima - enzymology
Neointima - etiology
Neointima - pathology
Neointima - prevention & control
Neointimal hyperplasia
Nitric oxide
Nitric Oxide - pharmacology
Nitric Oxide - therapeutic use
Oxidative Stress - drug effects
Proteasome
Proteasome Endopeptidase Complex - metabolism
Protective Agents - pharmacology
Protective Agents - therapeutic use
Rats
Rats, Zucker
Surgery
Treatment Outcome
title Nitric oxide differentially affects proteasome activator 28 after arterial injury in type 1 and type 2 diabetic rats
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20oxide%20differentially%20affects%20proteasome%20activator%2028%20after%20arterial%20injury%20in%20type%201%20and%20type%202%20diabetic%20rats&rft.jtitle=The%20Journal%20of%20surgical%20research&rft.au=Tsihlis,%20Nick%20D.,%20PhD&rft.date=2016-05-15&rft.volume=202&rft.issue=2&rft.spage=413&rft.epage=421&rft.pages=413-421&rft.issn=0022-4804&rft.eissn=1095-8673&rft_id=info:doi/10.1016/j.jss.2016.01.030&rft_dat=%3Cproquest_cross%3E1792370318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-2fd42834a84fdea4985b0fa78e0dbfa40290feea4fcd2b9894e4d4bcddf34ae13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1792370318&rft_id=info:pmid/27229117&rfr_iscdi=true