Loading…

Remotely induced magnetism in a normal metal using a superconducting spin-valve

A switchable induced magnetic moment in a non-magnetic metal that is separated from a ferromagnet by a thick superconducting layer contradicts existing models. Superconducting spintronics has emerged in the past decade as a promising new field that seeks to open a new dimension for nanoelectronics b...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2016-01, Vol.12 (1), p.57-61
Main Authors: Flokstra, M. G., Satchell, N., Kim, J., Burnell, G., Curran, P. J., Bending, S. J., Cooper, J. F. K., Kinane, C. J., Langridge, S., Isidori, A., Pugach, N., Eschrig, M., Luetkens, H., Suter, A., Prokscha, T., Lee, S. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-6b36248e2157be5b7b90d7bccaadb2e948d671f6544533ea45e88c3d62cf39163
cites cdi_FETCH-LOGICAL-c430t-6b36248e2157be5b7b90d7bccaadb2e948d671f6544533ea45e88c3d62cf39163
container_end_page 61
container_issue 1
container_start_page 57
container_title Nature physics
container_volume 12
creator Flokstra, M. G.
Satchell, N.
Kim, J.
Burnell, G.
Curran, P. J.
Bending, S. J.
Cooper, J. F. K.
Kinane, C. J.
Langridge, S.
Isidori, A.
Pugach, N.
Eschrig, M.
Luetkens, H.
Suter, A.
Prokscha, T.
Lee, S. L.
description A switchable induced magnetic moment in a non-magnetic metal that is separated from a ferromagnet by a thick superconducting layer contradicts existing models. Superconducting spintronics has emerged in the past decade as a promising new field that seeks to open a new dimension for nanoelectronics by utilizing the internal spin structure of the superconducting Cooper pair as a new degree of freedom 1 , 2 . Its basic building blocks are spin-triplet Cooper pairs with equally aligned spins, which are promoted by proximity of a conventional superconductor to a ferromagnetic material with inhomogeneous macroscopic magnetization 3 . Using low-energy muon spin-rotation experiments we find an unanticipated effect, in contradiction with the existing theoretical models of superconductivity and ferromagnetism: the appearance of a magnetization in a thin layer of a non-magnetic metal (gold), separated from a ferromagnetic double layer by a 50-nm-thick superconducting layer of Nb. The effect can be controlled either by temperature or by using a magnetic field to control the state of the remote ferromagnetic elements, and may act as a basic building block for a new generation of quantum interference devices based on the spin of a Cooper pair.
doi_str_mv 10.1038/nphys3486
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793220580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793220580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-6b36248e2157be5b7b90d7bccaadb2e948d671f6544533ea45e88c3d62cf39163</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgCq6rB_9BwYsK1XynPcriFywsiJ5Lmk7XLm1Sk3ah_94sK4voZTK8PBmGQeiS4DuCWXZv-88pMJ7JIzQjiouU8owcH3rFTtFZCBuMOZWEzdDqDTo3QDslja1GA1XS6bWFoQldTBKdWOc73SYdDLGOobHrGIaxB2_c7sewS0Lf2HSr2y2co5NatwEuft45-nh6fF-8pMvV8-viYZkazvCQypLJuBlQIlQJolRljitVGqN1VVLIeVZJRWopOBeMgeYCssywSlJTs5xINkfX-7m9d18jhKHommCgbbUFN4aCqJxRikWGI736Qzdu9DZuF5XgBCtK86hu9sp4F4KHuuh902k_FQQXu9MWh9NGe7u3IRq7Bv9r4j_8Dcq8exs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1754107229</pqid></control><display><type>article</type><title>Remotely induced magnetism in a normal metal using a superconducting spin-valve</title><source>Nature</source><creator>Flokstra, M. G. ; Satchell, N. ; Kim, J. ; Burnell, G. ; Curran, P. J. ; Bending, S. J. ; Cooper, J. F. K. ; Kinane, C. J. ; Langridge, S. ; Isidori, A. ; Pugach, N. ; Eschrig, M. ; Luetkens, H. ; Suter, A. ; Prokscha, T. ; Lee, S. L.</creator><creatorcontrib>Flokstra, M. G. ; Satchell, N. ; Kim, J. ; Burnell, G. ; Curran, P. J. ; Bending, S. J. ; Cooper, J. F. K. ; Kinane, C. J. ; Langridge, S. ; Isidori, A. ; Pugach, N. ; Eschrig, M. ; Luetkens, H. ; Suter, A. ; Prokscha, T. ; Lee, S. L.</creatorcontrib><description>A switchable induced magnetic moment in a non-magnetic metal that is separated from a ferromagnet by a thick superconducting layer contradicts existing models. Superconducting spintronics has emerged in the past decade as a promising new field that seeks to open a new dimension for nanoelectronics by utilizing the internal spin structure of the superconducting Cooper pair as a new degree of freedom 1 , 2 . Its basic building blocks are spin-triplet Cooper pairs with equally aligned spins, which are promoted by proximity of a conventional superconductor to a ferromagnetic material with inhomogeneous macroscopic magnetization 3 . Using low-energy muon spin-rotation experiments we find an unanticipated effect, in contradiction with the existing theoretical models of superconductivity and ferromagnetism: the appearance of a magnetization in a thin layer of a non-magnetic metal (gold), separated from a ferromagnetic double layer by a 50-nm-thick superconducting layer of Nb. The effect can be controlled either by temperature or by using a magnetic field to control the state of the remote ferromagnetic elements, and may act as a basic building block for a new generation of quantum interference devices based on the spin of a Cooper pair.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3486</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1001 ; 639/766/119/1003 ; 639/766/119/997 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Cooper pairs ; Devices ; Double layer ; Ferromagnetism ; letter ; Low energy ; Magnetic fields ; Magnetism ; Magnetization ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Superconductivity ; Superconductors ; Theoretical</subject><ispartof>Nature physics, 2016-01, Vol.12 (1), p.57-61</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-6b36248e2157be5b7b90d7bccaadb2e948d671f6544533ea45e88c3d62cf39163</citedby><cites>FETCH-LOGICAL-c430t-6b36248e2157be5b7b90d7bccaadb2e948d671f6544533ea45e88c3d62cf39163</cites><orcidid>0000-0002-7643-4695 ; 0000-0002-4474-2554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Flokstra, M. G.</creatorcontrib><creatorcontrib>Satchell, N.</creatorcontrib><creatorcontrib>Kim, J.</creatorcontrib><creatorcontrib>Burnell, G.</creatorcontrib><creatorcontrib>Curran, P. J.</creatorcontrib><creatorcontrib>Bending, S. J.</creatorcontrib><creatorcontrib>Cooper, J. F. K.</creatorcontrib><creatorcontrib>Kinane, C. J.</creatorcontrib><creatorcontrib>Langridge, S.</creatorcontrib><creatorcontrib>Isidori, A.</creatorcontrib><creatorcontrib>Pugach, N.</creatorcontrib><creatorcontrib>Eschrig, M.</creatorcontrib><creatorcontrib>Luetkens, H.</creatorcontrib><creatorcontrib>Suter, A.</creatorcontrib><creatorcontrib>Prokscha, T.</creatorcontrib><creatorcontrib>Lee, S. L.</creatorcontrib><title>Remotely induced magnetism in a normal metal using a superconducting spin-valve</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>A switchable induced magnetic moment in a non-magnetic metal that is separated from a ferromagnet by a thick superconducting layer contradicts existing models. Superconducting spintronics has emerged in the past decade as a promising new field that seeks to open a new dimension for nanoelectronics by utilizing the internal spin structure of the superconducting Cooper pair as a new degree of freedom 1 , 2 . Its basic building blocks are spin-triplet Cooper pairs with equally aligned spins, which are promoted by proximity of a conventional superconductor to a ferromagnetic material with inhomogeneous macroscopic magnetization 3 . Using low-energy muon spin-rotation experiments we find an unanticipated effect, in contradiction with the existing theoretical models of superconductivity and ferromagnetism: the appearance of a magnetization in a thin layer of a non-magnetic metal (gold), separated from a ferromagnetic double layer by a 50-nm-thick superconducting layer of Nb. The effect can be controlled either by temperature or by using a magnetic field to control the state of the remote ferromagnetic elements, and may act as a basic building block for a new generation of quantum interference devices based on the spin of a Cooper pair.</description><subject>639/766/119/1001</subject><subject>639/766/119/1003</subject><subject>639/766/119/997</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cooper pairs</subject><subject>Devices</subject><subject>Double layer</subject><subject>Ferromagnetism</subject><subject>letter</subject><subject>Low energy</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpl0E1LxDAQBuAgCq6rB_9BwYsK1XynPcriFywsiJ5Lmk7XLm1Sk3ah_94sK4voZTK8PBmGQeiS4DuCWXZv-88pMJ7JIzQjiouU8owcH3rFTtFZCBuMOZWEzdDqDTo3QDslja1GA1XS6bWFoQldTBKdWOc73SYdDLGOobHrGIaxB2_c7sewS0Lf2HSr2y2co5NatwEuft45-nh6fF-8pMvV8-viYZkazvCQypLJuBlQIlQJolRljitVGqN1VVLIeVZJRWopOBeMgeYCssywSlJTs5xINkfX-7m9d18jhKHommCgbbUFN4aCqJxRikWGI736Qzdu9DZuF5XgBCtK86hu9sp4F4KHuuh902k_FQQXu9MWh9NGe7u3IRq7Bv9r4j_8Dcq8exs</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Flokstra, M. G.</creator><creator>Satchell, N.</creator><creator>Kim, J.</creator><creator>Burnell, G.</creator><creator>Curran, P. J.</creator><creator>Bending, S. J.</creator><creator>Cooper, J. F. K.</creator><creator>Kinane, C. J.</creator><creator>Langridge, S.</creator><creator>Isidori, A.</creator><creator>Pugach, N.</creator><creator>Eschrig, M.</creator><creator>Luetkens, H.</creator><creator>Suter, A.</creator><creator>Prokscha, T.</creator><creator>Lee, S. L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7643-4695</orcidid><orcidid>https://orcid.org/0000-0002-4474-2554</orcidid></search><sort><creationdate>20160101</creationdate><title>Remotely induced magnetism in a normal metal using a superconducting spin-valve</title><author>Flokstra, M. G. ; Satchell, N. ; Kim, J. ; Burnell, G. ; Curran, P. J. ; Bending, S. J. ; Cooper, J. F. K. ; Kinane, C. J. ; Langridge, S. ; Isidori, A. ; Pugach, N. ; Eschrig, M. ; Luetkens, H. ; Suter, A. ; Prokscha, T. ; Lee, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-6b36248e2157be5b7b90d7bccaadb2e948d671f6544533ea45e88c3d62cf39163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/119/1001</topic><topic>639/766/119/1003</topic><topic>639/766/119/997</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cooper pairs</topic><topic>Devices</topic><topic>Double layer</topic><topic>Ferromagnetism</topic><topic>letter</topic><topic>Low energy</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flokstra, M. G.</creatorcontrib><creatorcontrib>Satchell, N.</creatorcontrib><creatorcontrib>Kim, J.</creatorcontrib><creatorcontrib>Burnell, G.</creatorcontrib><creatorcontrib>Curran, P. J.</creatorcontrib><creatorcontrib>Bending, S. J.</creatorcontrib><creatorcontrib>Cooper, J. F. K.</creatorcontrib><creatorcontrib>Kinane, C. J.</creatorcontrib><creatorcontrib>Langridge, S.</creatorcontrib><creatorcontrib>Isidori, A.</creatorcontrib><creatorcontrib>Pugach, N.</creatorcontrib><creatorcontrib>Eschrig, M.</creatorcontrib><creatorcontrib>Luetkens, H.</creatorcontrib><creatorcontrib>Suter, A.</creatorcontrib><creatorcontrib>Prokscha, T.</creatorcontrib><creatorcontrib>Lee, S. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flokstra, M. G.</au><au>Satchell, N.</au><au>Kim, J.</au><au>Burnell, G.</au><au>Curran, P. J.</au><au>Bending, S. J.</au><au>Cooper, J. F. K.</au><au>Kinane, C. J.</au><au>Langridge, S.</au><au>Isidori, A.</au><au>Pugach, N.</au><au>Eschrig, M.</au><au>Luetkens, H.</au><au>Suter, A.</au><au>Prokscha, T.</au><au>Lee, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remotely induced magnetism in a normal metal using a superconducting spin-valve</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issue>1</issue><spage>57</spage><epage>61</epage><pages>57-61</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A switchable induced magnetic moment in a non-magnetic metal that is separated from a ferromagnet by a thick superconducting layer contradicts existing models. Superconducting spintronics has emerged in the past decade as a promising new field that seeks to open a new dimension for nanoelectronics by utilizing the internal spin structure of the superconducting Cooper pair as a new degree of freedom 1 , 2 . Its basic building blocks are spin-triplet Cooper pairs with equally aligned spins, which are promoted by proximity of a conventional superconductor to a ferromagnetic material with inhomogeneous macroscopic magnetization 3 . Using low-energy muon spin-rotation experiments we find an unanticipated effect, in contradiction with the existing theoretical models of superconductivity and ferromagnetism: the appearance of a magnetization in a thin layer of a non-magnetic metal (gold), separated from a ferromagnetic double layer by a 50-nm-thick superconducting layer of Nb. The effect can be controlled either by temperature or by using a magnetic field to control the state of the remote ferromagnetic elements, and may act as a basic building block for a new generation of quantum interference devices based on the spin of a Cooper pair.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3486</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7643-4695</orcidid><orcidid>https://orcid.org/0000-0002-4474-2554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2016-01, Vol.12 (1), p.57-61
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1793220580
source Nature
subjects 639/766/119/1001
639/766/119/1003
639/766/119/997
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Cooper pairs
Devices
Double layer
Ferromagnetism
letter
Low energy
Magnetic fields
Magnetism
Magnetization
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Superconductivity
Superconductors
Theoretical
title Remotely induced magnetism in a normal metal using a superconducting spin-valve
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remotely%20induced%20magnetism%20in%20a%20normal%20metal%20using%20a%20superconducting%20spin-valve&rft.jtitle=Nature%20physics&rft.au=Flokstra,%20M.%20G.&rft.date=2016-01-01&rft.volume=12&rft.issue=1&rft.spage=57&rft.epage=61&rft.pages=57-61&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3486&rft_dat=%3Cproquest_cross%3E1793220580%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-6b36248e2157be5b7b90d7bccaadb2e948d671f6544533ea45e88c3d62cf39163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1754107229&rft_id=info:pmid/&rfr_iscdi=true