Loading…

Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach

Extended Kalman filter (EKF) has been widely applied for sensorless direct torque control (DTC) in induction machines (IMs). One key problem associated with EKF is that the estimator suffers from computational burden and numerical problems resulting from high order mathematical models. To reduce the...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-17
Main Authors: Yi, Boyu, Chen, Lingyu, Kang, Longyun, Zhang, Jinliang, Xu, Zhihui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c347t-6bc2f32dc1f45049e8802f97746ef10f50b14295970b0e518d8cba907a49ece73
container_end_page 17
container_issue 2015
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2015
creator Yi, Boyu
Chen, Lingyu
Kang, Longyun
Zhang, Jinliang
Xu, Zhihui
description Extended Kalman filter (EKF) has been widely applied for sensorless direct torque control (DTC) in induction machines (IMs). One key problem associated with EKF is that the estimator suffers from computational burden and numerical problems resulting from high order mathematical models. To reduce the computational cost, a two-stage extended Kalman filter (TEKF) based solution is presented for closed-loop stator flux, speed, and torque estimation of IM to achieve sensorless DTC-SVM operations in this paper. The novel observer can be similarly derived as the optimal two-stage Kalman filter (TKF) which has been proposed by several researchers. Compared to a straightforward implementation of a conventional EKF, the TEKF estimator can reduce the number of arithmetic operations. Simulation and experimental results verify the performance of the proposed TEKF estimator for DTC of IMs.
doi_str_mv 10.1155/2015/609586
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793223152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3833134521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-6bc2f32dc1f45049e8802f97746ef10f50b14295970b0e518d8cba907a49ece73</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBuAIgUQpTOzIEgsChfrsOE7YqpZCRRFDi8QWXPcMqdK42CkV_x5XYUAsTHfDo_t4o-gU6DWAED1GQfRSmoss3Ys6IFIeC0jkfugpS2Jg_OUwOvJ-SSkDAVkneh2WDnVDZtZ9bJAMbN04WxFryBRrb12F3pNxvdjoprQ1eVT6vayRDF35if6G9Mlsa-Npo96QPKhqpWoyKqsGHemv184GfRwdGFV5PPmp3eh5dDsb3MeTp7vxoD-JNU9kE6dzzQxnCw0mETTJMcsoM7mUSYoGqBF0DgnLRS7pnGI4fZHpucqpVMFqlLwbXbRzw9rwiW-KVek1VpWq0W58ATLnjHEQLNDzP3RpN64O1wXFgAOjQgR11SrtrPcOTbF25Uq5rwJosUu72KVdtGkHfdnqEM9Cbct_8FmLMRA06heWCUtz_g3Czoa3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721312055</pqid></control><display><type>article</type><title>Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Yi, Boyu ; Chen, Lingyu ; Kang, Longyun ; Zhang, Jinliang ; Xu, Zhihui</creator><contributor>Djemai, Mohamed</contributor><creatorcontrib>Yi, Boyu ; Chen, Lingyu ; Kang, Longyun ; Zhang, Jinliang ; Xu, Zhihui ; Djemai, Mohamed</creatorcontrib><description>Extended Kalman filter (EKF) has been widely applied for sensorless direct torque control (DTC) in induction machines (IMs). One key problem associated with EKF is that the estimator suffers from computational burden and numerical problems resulting from high order mathematical models. To reduce the computational cost, a two-stage extended Kalman filter (TEKF) based solution is presented for closed-loop stator flux, speed, and torque estimation of IM to achieve sensorless DTC-SVM operations in this paper. The novel observer can be similarly derived as the optimal two-stage Kalman filter (TKF) which has been proposed by several researchers. Compared to a straightforward implementation of a conventional EKF, the TEKF estimator can reduce the number of arithmetic operations. Simulation and experimental results verify the performance of the proposed TEKF estimator for DTC of IMs.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/609586</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Closed loops ; Computational efficiency ; Computing costs ; Estimators ; Extended Kalman filter ; Induction motors ; Kalman filters ; Mathematical models ; Motors ; Neural networks ; Optimization ; Parameter estimation ; Torque ; Velocity</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-17</ispartof><rights>Copyright © 2015 Jinliang Zhang et al.</rights><rights>Copyright © 2015 Jinliang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c347t-6bc2f32dc1f45049e8802f97746ef10f50b14295970b0e518d8cba907a49ece73</cites><orcidid>0000-0002-9479-6403 ; 0000-0001-8315-9276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1721312055/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1721312055?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571,74875</link.rule.ids></links><search><contributor>Djemai, Mohamed</contributor><creatorcontrib>Yi, Boyu</creatorcontrib><creatorcontrib>Chen, Lingyu</creatorcontrib><creatorcontrib>Kang, Longyun</creatorcontrib><creatorcontrib>Zhang, Jinliang</creatorcontrib><creatorcontrib>Xu, Zhihui</creatorcontrib><title>Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach</title><title>Mathematical problems in engineering</title><description>Extended Kalman filter (EKF) has been widely applied for sensorless direct torque control (DTC) in induction machines (IMs). One key problem associated with EKF is that the estimator suffers from computational burden and numerical problems resulting from high order mathematical models. To reduce the computational cost, a two-stage extended Kalman filter (TEKF) based solution is presented for closed-loop stator flux, speed, and torque estimation of IM to achieve sensorless DTC-SVM operations in this paper. The novel observer can be similarly derived as the optimal two-stage Kalman filter (TKF) which has been proposed by several researchers. Compared to a straightforward implementation of a conventional EKF, the TEKF estimator can reduce the number of arithmetic operations. Simulation and experimental results verify the performance of the proposed TEKF estimator for DTC of IMs.</description><subject>Closed loops</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>Estimators</subject><subject>Extended Kalman filter</subject><subject>Induction motors</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Motors</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Torque</subject><subject>Velocity</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0D1PwzAQBuAIgUQpTOzIEgsChfrsOE7YqpZCRRFDi8QWXPcMqdK42CkV_x5XYUAsTHfDo_t4o-gU6DWAED1GQfRSmoss3Ys6IFIeC0jkfugpS2Jg_OUwOvJ-SSkDAVkneh2WDnVDZtZ9bJAMbN04WxFryBRrb12F3pNxvdjoprQ1eVT6vayRDF35if6G9Mlsa-Npo96QPKhqpWoyKqsGHemv184GfRwdGFV5PPmp3eh5dDsb3MeTp7vxoD-JNU9kE6dzzQxnCw0mETTJMcsoM7mUSYoGqBF0DgnLRS7pnGI4fZHpucqpVMFqlLwbXbRzw9rwiW-KVek1VpWq0W58ATLnjHEQLNDzP3RpN64O1wXFgAOjQgR11SrtrPcOTbF25Uq5rwJosUu72KVdtGkHfdnqEM9Cbct_8FmLMRA06heWCUtz_g3Czoa3</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Yi, Boyu</creator><creator>Chen, Lingyu</creator><creator>Kang, Longyun</creator><creator>Zhang, Jinliang</creator><creator>Xu, Zhihui</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9479-6403</orcidid><orcidid>https://orcid.org/0000-0001-8315-9276</orcidid></search><sort><creationdate>20150101</creationdate><title>Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach</title><author>Yi, Boyu ; Chen, Lingyu ; Kang, Longyun ; Zhang, Jinliang ; Xu, Zhihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-6bc2f32dc1f45049e8802f97746ef10f50b14295970b0e518d8cba907a49ece73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Closed loops</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>Estimators</topic><topic>Extended Kalman filter</topic><topic>Induction motors</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Motors</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Torque</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Boyu</creatorcontrib><creatorcontrib>Chen, Lingyu</creatorcontrib><creatorcontrib>Kang, Longyun</creatorcontrib><creatorcontrib>Zhang, Jinliang</creatorcontrib><creatorcontrib>Xu, Zhihui</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Boyu</au><au>Chen, Lingyu</au><au>Kang, Longyun</au><au>Zhang, Jinliang</au><au>Xu, Zhihui</au><au>Djemai, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Extended Kalman filter (EKF) has been widely applied for sensorless direct torque control (DTC) in induction machines (IMs). One key problem associated with EKF is that the estimator suffers from computational burden and numerical problems resulting from high order mathematical models. To reduce the computational cost, a two-stage extended Kalman filter (TEKF) based solution is presented for closed-loop stator flux, speed, and torque estimation of IM to achieve sensorless DTC-SVM operations in this paper. The novel observer can be similarly derived as the optimal two-stage Kalman filter (TKF) which has been proposed by several researchers. Compared to a straightforward implementation of a conventional EKF, the TEKF estimator can reduce the number of arithmetic operations. Simulation and experimental results verify the performance of the proposed TEKF estimator for DTC of IMs.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/609586</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9479-6403</orcidid><orcidid>https://orcid.org/0000-0001-8315-9276</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-17
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1793223152
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database; IngentaConnect Journals
subjects Closed loops
Computational efficiency
Computing costs
Estimators
Extended Kalman filter
Induction motors
Kalman filters
Mathematical models
Motors
Neural networks
Optimization
Parameter estimation
Torque
Velocity
title Direct Torque Control of Sensorless Induction Machine Drives: A Two-Stage Kalman Filter Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Torque%20Control%20of%20Sensorless%20Induction%20Machine%20Drives:%20A%20Two-Stage%20Kalman%20Filter%20Approach&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Yi,%20Boyu&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/609586&rft_dat=%3Cproquest_cross%3E3833134521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-6bc2f32dc1f45049e8802f97746ef10f50b14295970b0e518d8cba907a49ece73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1721312055&rft_id=info:pmid/&rfr_iscdi=true