Loading…

On some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariates

This paper discusses some aspects of flood frequency analysis using the peaks-over-threshold model with Poisson arrivals and generalized Pareto (GP) distributed peak magnitudes under nonstationarity, using climate covariates. The discussion topics were motivated by a case study on the influence of E...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic environmental research and risk assessment 2016-01, Vol.30 (1), p.207-224
Main Authors: Silva, Artur Tiago, Naghettini, Mauro, Portela, Maria Manuela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper discusses some aspects of flood frequency analysis using the peaks-over-threshold model with Poisson arrivals and generalized Pareto (GP) distributed peak magnitudes under nonstationarity, using climate covariates. The discussion topics were motivated by a case study on the influence of El Niño–Southern Oscillation on the flood regime in the Itajaí river basin, in Southern Brazil. The Niño3.4 (DJF) index is used as a covariate in nonstationary estimates of the Poisson and GP distributions scale parameters. Prior to the positing of parametric dependence functions, a preliminary data-driven analysis was carried out using nonparametric regression models to estimate the dependence of the parameters on the covariate. Model fits were evaluated using asymptotic likelihood ratio tests, AIC, and Q–Q plots. Results show statistically significant and complex dependence relationships with the covariate on both nonstationary parameters. The nonstationary flood hazard measure design life level (DLL) was used to compare the relative performances of stationary and nonstationary models in quantifying flood hazard over the period of records. Uncertainty analyses were carried out in every step of the application using the delta method.
ISSN:1436-3240
1436-3259
DOI:10.1007/s00477-015-1072-y