Loading…

Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading

Exposure to high heat can cause polymer matrix composites (PMC) to fail under mechanical loads easily sustained at room temperature. However, heat is removed and temperature reduced in PMCs by active cooling through an internal vascular network. Here we compare structural survival of PMCs under ther...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2016-03, Vol.82, p.170-179
Main Authors: Coppola, Anthony M., Warpinski, Luke G., Murray, Sean P., Sottos, Nancy R., White, Scott R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693
cites cdi_FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693
container_end_page 179
container_issue
container_start_page 170
container_title Composites. Part A, Applied science and manufacturing
container_volume 82
creator Coppola, Anthony M.
Warpinski, Luke G.
Murray, Sean P.
Sottos, Nancy R.
White, Scott R.
description Exposure to high heat can cause polymer matrix composites (PMC) to fail under mechanical loads easily sustained at room temperature. However, heat is removed and temperature reduced in PMCs by active cooling through an internal vascular network. Here we compare structural survival of PMCs under thermomechanical loading with and without active cooling. Microchannels are incorporated into autoclave-cured carbon fiber/epoxy composites using sacrificial fibers. Time-to-failure, material temperature, and heat removal rates are measured during simultaneous heating on one face (5–75kW/m2) and compressive loading (100–250MPa). The effects of applied compressive load, heat flux, channel spacing, coolant flow rate, and channel distance from the heated surface are examined. Actively cooled composites containing 0.33% channel volume fraction survive without structural failure for longer than 30min under 200MPa compressive loading and 60kW/m2 heat flux. In dramatic comparison, non-cooled composites fail in less than a minute under the same loading conditions.
doi_str_mv 10.1016/j.compositesa.2015.12.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793233702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X15004741</els_id><sourcerecordid>1793233702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693</originalsourceid><addsrcrecordid>eNqNkEtr5DAQhM2SwE4e_8F7y8VeyfJLxzDkBYEckkBuotNq7WiQrVnJNpl_Hw2zsDnm1E1TVU19WfaLs5Iz3v7eluiHnY92oghlxXhT8qpknP3IVrzv-qLpa3aSdtHIohfN28_sLMYtY0wIyVeZe57DYhdwuTc54GQXcvscvXek88Fi8AtEnB2EfOfdfqCQDzAF-5H__5vPo073OMcJ7Jh804bC4AfCDYwWU7bzoO345yI7NeAiXf6b59nr7c3L-r54fLp7WF8_FlizZio08pZ12GqotDRCowCJfSdY36N8r6EXLVLXydY0IIAD8LY2YGptTN2YVorz7OqYuwv-70xxUoONSM7BSH6OindSVEJ0rEpSeZSmpjEGMmoX7ABhrzhTB8Jqq74QVgfCilcqEU7e9dFLqctiKaiIlkYkbQPhpLS330j5BK9kj2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793233702</pqid></control><display><type>article</type><title>Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Coppola, Anthony M. ; Warpinski, Luke G. ; Murray, Sean P. ; Sottos, Nancy R. ; White, Scott R.</creator><creatorcontrib>Coppola, Anthony M. ; Warpinski, Luke G. ; Murray, Sean P. ; Sottos, Nancy R. ; White, Scott R.</creatorcontrib><description>Exposure to high heat can cause polymer matrix composites (PMC) to fail under mechanical loads easily sustained at room temperature. However, heat is removed and temperature reduced in PMCs by active cooling through an internal vascular network. Here we compare structural survival of PMCs under thermomechanical loading with and without active cooling. Microchannels are incorporated into autoclave-cured carbon fiber/epoxy composites using sacrificial fibers. Time-to-failure, material temperature, and heat removal rates are measured during simultaneous heating on one face (5–75kW/m2) and compressive loading (100–250MPa). The effects of applied compressive load, heat flux, channel spacing, coolant flow rate, and channel distance from the heated surface are examined. Actively cooled composites containing 0.33% channel volume fraction survive without structural failure for longer than 30min under 200MPa compressive loading and 60kW/m2 heat flux. In dramatic comparison, non-cooled composites fail in less than a minute under the same loading conditions.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2015.12.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>B. High-temperature properties ; B. Thermomechanical ; Channels ; Cooling ; D. Thermal analysis ; Heat flux ; Heat transfer ; Heating ; Networks ; Polymer matrix composites ; Survival ; Vascular cooling</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2016-03, Vol.82, p.170-179</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693</citedby><cites>FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693</cites><orcidid>0000-0003-3637-8681 ; 0000-0002-0831-9097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Coppola, Anthony M.</creatorcontrib><creatorcontrib>Warpinski, Luke G.</creatorcontrib><creatorcontrib>Murray, Sean P.</creatorcontrib><creatorcontrib>Sottos, Nancy R.</creatorcontrib><creatorcontrib>White, Scott R.</creatorcontrib><title>Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading</title><title>Composites. Part A, Applied science and manufacturing</title><description>Exposure to high heat can cause polymer matrix composites (PMC) to fail under mechanical loads easily sustained at room temperature. However, heat is removed and temperature reduced in PMCs by active cooling through an internal vascular network. Here we compare structural survival of PMCs under thermomechanical loading with and without active cooling. Microchannels are incorporated into autoclave-cured carbon fiber/epoxy composites using sacrificial fibers. Time-to-failure, material temperature, and heat removal rates are measured during simultaneous heating on one face (5–75kW/m2) and compressive loading (100–250MPa). The effects of applied compressive load, heat flux, channel spacing, coolant flow rate, and channel distance from the heated surface are examined. Actively cooled composites containing 0.33% channel volume fraction survive without structural failure for longer than 30min under 200MPa compressive loading and 60kW/m2 heat flux. In dramatic comparison, non-cooled composites fail in less than a minute under the same loading conditions.</description><subject>B. High-temperature properties</subject><subject>B. Thermomechanical</subject><subject>Channels</subject><subject>Cooling</subject><subject>D. Thermal analysis</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Networks</subject><subject>Polymer matrix composites</subject><subject>Survival</subject><subject>Vascular cooling</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkEtr5DAQhM2SwE4e_8F7y8VeyfJLxzDkBYEckkBuotNq7WiQrVnJNpl_Hw2zsDnm1E1TVU19WfaLs5Iz3v7eluiHnY92oghlxXhT8qpknP3IVrzv-qLpa3aSdtHIohfN28_sLMYtY0wIyVeZe57DYhdwuTc54GQXcvscvXek88Fi8AtEnB2EfOfdfqCQDzAF-5H__5vPo073OMcJ7Jh804bC4AfCDYwWU7bzoO345yI7NeAiXf6b59nr7c3L-r54fLp7WF8_FlizZio08pZ12GqotDRCowCJfSdY36N8r6EXLVLXydY0IIAD8LY2YGptTN2YVorz7OqYuwv-70xxUoONSM7BSH6OindSVEJ0rEpSeZSmpjEGMmoX7ABhrzhTB8Jqq74QVgfCilcqEU7e9dFLqctiKaiIlkYkbQPhpLS330j5BK9kj2Q</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Coppola, Anthony M.</creator><creator>Warpinski, Luke G.</creator><creator>Murray, Sean P.</creator><creator>Sottos, Nancy R.</creator><creator>White, Scott R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3637-8681</orcidid><orcidid>https://orcid.org/0000-0002-0831-9097</orcidid></search><sort><creationdate>201603</creationdate><title>Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading</title><author>Coppola, Anthony M. ; Warpinski, Luke G. ; Murray, Sean P. ; Sottos, Nancy R. ; White, Scott R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>B. High-temperature properties</topic><topic>B. Thermomechanical</topic><topic>Channels</topic><topic>Cooling</topic><topic>D. Thermal analysis</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Networks</topic><topic>Polymer matrix composites</topic><topic>Survival</topic><topic>Vascular cooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coppola, Anthony M.</creatorcontrib><creatorcontrib>Warpinski, Luke G.</creatorcontrib><creatorcontrib>Murray, Sean P.</creatorcontrib><creatorcontrib>Sottos, Nancy R.</creatorcontrib><creatorcontrib>White, Scott R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coppola, Anthony M.</au><au>Warpinski, Luke G.</au><au>Murray, Sean P.</au><au>Sottos, Nancy R.</au><au>White, Scott R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2016-03</date><risdate>2016</risdate><volume>82</volume><spage>170</spage><epage>179</epage><pages>170-179</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>Exposure to high heat can cause polymer matrix composites (PMC) to fail under mechanical loads easily sustained at room temperature. However, heat is removed and temperature reduced in PMCs by active cooling through an internal vascular network. Here we compare structural survival of PMCs under thermomechanical loading with and without active cooling. Microchannels are incorporated into autoclave-cured carbon fiber/epoxy composites using sacrificial fibers. Time-to-failure, material temperature, and heat removal rates are measured during simultaneous heating on one face (5–75kW/m2) and compressive loading (100–250MPa). The effects of applied compressive load, heat flux, channel spacing, coolant flow rate, and channel distance from the heated surface are examined. Actively cooled composites containing 0.33% channel volume fraction survive without structural failure for longer than 30min under 200MPa compressive loading and 60kW/m2 heat flux. In dramatic comparison, non-cooled composites fail in less than a minute under the same loading conditions.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2015.12.010</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3637-8681</orcidid><orcidid>https://orcid.org/0000-0002-0831-9097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2016-03, Vol.82, p.170-179
issn 1359-835X
1878-5840
language eng
recordid cdi_proquest_miscellaneous_1793233702
source ScienceDirect Freedom Collection 2022-2024
subjects B. High-temperature properties
B. Thermomechanical
Channels
Cooling
D. Thermal analysis
Heat flux
Heat transfer
Heating
Networks
Polymer matrix composites
Survival
Vascular cooling
title Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survival%20of%20actively%20cooled%20microvascular%20polymer%20matrix%20composites%20under%20sustained%20thermomechanical%20loading&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Coppola,%20Anthony%20M.&rft.date=2016-03&rft.volume=82&rft.spage=170&rft.epage=179&rft.pages=170-179&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2015.12.010&rft_dat=%3Cproquest_cross%3E1793233702%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793233702&rft_id=info:pmid/&rfr_iscdi=true