Loading…
Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading
Exposure to high heat can cause polymer matrix composites (PMC) to fail under mechanical loads easily sustained at room temperature. However, heat is removed and temperature reduced in PMCs by active cooling through an internal vascular network. Here we compare structural survival of PMCs under ther...
Saved in:
Published in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2016-03, Vol.82, p.170-179 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693 |
container_end_page | 179 |
container_issue | |
container_start_page | 170 |
container_title | Composites. Part A, Applied science and manufacturing |
container_volume | 82 |
creator | Coppola, Anthony M. Warpinski, Luke G. Murray, Sean P. Sottos, Nancy R. White, Scott R. |
description | Exposure to high heat can cause polymer matrix composites (PMC) to fail under mechanical loads easily sustained at room temperature. However, heat is removed and temperature reduced in PMCs by active cooling through an internal vascular network. Here we compare structural survival of PMCs under thermomechanical loading with and without active cooling. Microchannels are incorporated into autoclave-cured carbon fiber/epoxy composites using sacrificial fibers. Time-to-failure, material temperature, and heat removal rates are measured during simultaneous heating on one face (5–75kW/m2) and compressive loading (100–250MPa). The effects of applied compressive load, heat flux, channel spacing, coolant flow rate, and channel distance from the heated surface are examined. Actively cooled composites containing 0.33% channel volume fraction survive without structural failure for longer than 30min under 200MPa compressive loading and 60kW/m2 heat flux. In dramatic comparison, non-cooled composites fail in less than a minute under the same loading conditions. |
doi_str_mv | 10.1016/j.compositesa.2015.12.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793233702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X15004741</els_id><sourcerecordid>1793233702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693</originalsourceid><addsrcrecordid>eNqNkEtr5DAQhM2SwE4e_8F7y8VeyfJLxzDkBYEckkBuotNq7WiQrVnJNpl_Hw2zsDnm1E1TVU19WfaLs5Iz3v7eluiHnY92oghlxXhT8qpknP3IVrzv-qLpa3aSdtHIohfN28_sLMYtY0wIyVeZe57DYhdwuTc54GQXcvscvXek88Fi8AtEnB2EfOfdfqCQDzAF-5H__5vPo073OMcJ7Jh804bC4AfCDYwWU7bzoO345yI7NeAiXf6b59nr7c3L-r54fLp7WF8_FlizZio08pZ12GqotDRCowCJfSdY36N8r6EXLVLXydY0IIAD8LY2YGptTN2YVorz7OqYuwv-70xxUoONSM7BSH6OindSVEJ0rEpSeZSmpjEGMmoX7ABhrzhTB8Jqq74QVgfCilcqEU7e9dFLqctiKaiIlkYkbQPhpLS330j5BK9kj2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793233702</pqid></control><display><type>article</type><title>Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Coppola, Anthony M. ; Warpinski, Luke G. ; Murray, Sean P. ; Sottos, Nancy R. ; White, Scott R.</creator><creatorcontrib>Coppola, Anthony M. ; Warpinski, Luke G. ; Murray, Sean P. ; Sottos, Nancy R. ; White, Scott R.</creatorcontrib><description>Exposure to high heat can cause polymer matrix composites (PMC) to fail under mechanical loads easily sustained at room temperature. However, heat is removed and temperature reduced in PMCs by active cooling through an internal vascular network. Here we compare structural survival of PMCs under thermomechanical loading with and without active cooling. Microchannels are incorporated into autoclave-cured carbon fiber/epoxy composites using sacrificial fibers. Time-to-failure, material temperature, and heat removal rates are measured during simultaneous heating on one face (5–75kW/m2) and compressive loading (100–250MPa). The effects of applied compressive load, heat flux, channel spacing, coolant flow rate, and channel distance from the heated surface are examined. Actively cooled composites containing 0.33% channel volume fraction survive without structural failure for longer than 30min under 200MPa compressive loading and 60kW/m2 heat flux. In dramatic comparison, non-cooled composites fail in less than a minute under the same loading conditions.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2015.12.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>B. High-temperature properties ; B. Thermomechanical ; Channels ; Cooling ; D. Thermal analysis ; Heat flux ; Heat transfer ; Heating ; Networks ; Polymer matrix composites ; Survival ; Vascular cooling</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2016-03, Vol.82, p.170-179</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693</citedby><cites>FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693</cites><orcidid>0000-0003-3637-8681 ; 0000-0002-0831-9097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Coppola, Anthony M.</creatorcontrib><creatorcontrib>Warpinski, Luke G.</creatorcontrib><creatorcontrib>Murray, Sean P.</creatorcontrib><creatorcontrib>Sottos, Nancy R.</creatorcontrib><creatorcontrib>White, Scott R.</creatorcontrib><title>Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading</title><title>Composites. Part A, Applied science and manufacturing</title><description>Exposure to high heat can cause polymer matrix composites (PMC) to fail under mechanical loads easily sustained at room temperature. However, heat is removed and temperature reduced in PMCs by active cooling through an internal vascular network. Here we compare structural survival of PMCs under thermomechanical loading with and without active cooling. Microchannels are incorporated into autoclave-cured carbon fiber/epoxy composites using sacrificial fibers. Time-to-failure, material temperature, and heat removal rates are measured during simultaneous heating on one face (5–75kW/m2) and compressive loading (100–250MPa). The effects of applied compressive load, heat flux, channel spacing, coolant flow rate, and channel distance from the heated surface are examined. Actively cooled composites containing 0.33% channel volume fraction survive without structural failure for longer than 30min under 200MPa compressive loading and 60kW/m2 heat flux. In dramatic comparison, non-cooled composites fail in less than a minute under the same loading conditions.</description><subject>B. High-temperature properties</subject><subject>B. Thermomechanical</subject><subject>Channels</subject><subject>Cooling</subject><subject>D. Thermal analysis</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Networks</subject><subject>Polymer matrix composites</subject><subject>Survival</subject><subject>Vascular cooling</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkEtr5DAQhM2SwE4e_8F7y8VeyfJLxzDkBYEckkBuotNq7WiQrVnJNpl_Hw2zsDnm1E1TVU19WfaLs5Iz3v7eluiHnY92oghlxXhT8qpknP3IVrzv-qLpa3aSdtHIohfN28_sLMYtY0wIyVeZe57DYhdwuTc54GQXcvscvXek88Fi8AtEnB2EfOfdfqCQDzAF-5H__5vPo073OMcJ7Jh804bC4AfCDYwWU7bzoO345yI7NeAiXf6b59nr7c3L-r54fLp7WF8_FlizZio08pZ12GqotDRCowCJfSdY36N8r6EXLVLXydY0IIAD8LY2YGptTN2YVorz7OqYuwv-70xxUoONSM7BSH6OindSVEJ0rEpSeZSmpjEGMmoX7ABhrzhTB8Jqq74QVgfCilcqEU7e9dFLqctiKaiIlkYkbQPhpLS330j5BK9kj2Q</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Coppola, Anthony M.</creator><creator>Warpinski, Luke G.</creator><creator>Murray, Sean P.</creator><creator>Sottos, Nancy R.</creator><creator>White, Scott R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3637-8681</orcidid><orcidid>https://orcid.org/0000-0002-0831-9097</orcidid></search><sort><creationdate>201603</creationdate><title>Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading</title><author>Coppola, Anthony M. ; Warpinski, Luke G. ; Murray, Sean P. ; Sottos, Nancy R. ; White, Scott R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>B. High-temperature properties</topic><topic>B. Thermomechanical</topic><topic>Channels</topic><topic>Cooling</topic><topic>D. Thermal analysis</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Networks</topic><topic>Polymer matrix composites</topic><topic>Survival</topic><topic>Vascular cooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coppola, Anthony M.</creatorcontrib><creatorcontrib>Warpinski, Luke G.</creatorcontrib><creatorcontrib>Murray, Sean P.</creatorcontrib><creatorcontrib>Sottos, Nancy R.</creatorcontrib><creatorcontrib>White, Scott R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coppola, Anthony M.</au><au>Warpinski, Luke G.</au><au>Murray, Sean P.</au><au>Sottos, Nancy R.</au><au>White, Scott R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2016-03</date><risdate>2016</risdate><volume>82</volume><spage>170</spage><epage>179</epage><pages>170-179</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>Exposure to high heat can cause polymer matrix composites (PMC) to fail under mechanical loads easily sustained at room temperature. However, heat is removed and temperature reduced in PMCs by active cooling through an internal vascular network. Here we compare structural survival of PMCs under thermomechanical loading with and without active cooling. Microchannels are incorporated into autoclave-cured carbon fiber/epoxy composites using sacrificial fibers. Time-to-failure, material temperature, and heat removal rates are measured during simultaneous heating on one face (5–75kW/m2) and compressive loading (100–250MPa). The effects of applied compressive load, heat flux, channel spacing, coolant flow rate, and channel distance from the heated surface are examined. Actively cooled composites containing 0.33% channel volume fraction survive without structural failure for longer than 30min under 200MPa compressive loading and 60kW/m2 heat flux. In dramatic comparison, non-cooled composites fail in less than a minute under the same loading conditions.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2015.12.010</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3637-8681</orcidid><orcidid>https://orcid.org/0000-0002-0831-9097</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-835X |
ispartof | Composites. Part A, Applied science and manufacturing, 2016-03, Vol.82, p.170-179 |
issn | 1359-835X 1878-5840 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793233702 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | B. High-temperature properties B. Thermomechanical Channels Cooling D. Thermal analysis Heat flux Heat transfer Heating Networks Polymer matrix composites Survival Vascular cooling |
title | Survival of actively cooled microvascular polymer matrix composites under sustained thermomechanical loading |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survival%20of%20actively%20cooled%20microvascular%20polymer%20matrix%20composites%20under%20sustained%20thermomechanical%20loading&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Coppola,%20Anthony%20M.&rft.date=2016-03&rft.volume=82&rft.spage=170&rft.epage=179&rft.pages=170-179&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2015.12.010&rft_dat=%3Cproquest_cross%3E1793233702%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-dc1607c6da2d9f3dc3a9c873088c9b4a836ce7796f5a3a1aa164faf4dff45f693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793233702&rft_id=info:pmid/&rfr_iscdi=true |