Loading…

Effect of Nitrogen Content on the Mechanical Properties of Amorphous SiCN Films

Amorphous silicon carbonitride (a-SiCxNy) thin films were deposited using reactive magnetron sputtering of SiC target in the mixture of Ar and N gasses. The films with nitrogen content from 0 - 40 at.% were sputtered at various N2/Ar flow ratios in the range of 0 - 0.48. The as deposited films were...

Full description

Saved in:
Bibliographic Details
Published in:Key Engineering Materials 2015-09, Vol.662, p.95-98
Main Authors: Tomaštík, Jan, Kulikovsky, Valeriy, Čtvrtlík, Radim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Amorphous silicon carbonitride (a-SiCxNy) thin films were deposited using reactive magnetron sputtering of SiC target in the mixture of Ar and N gasses. The films with nitrogen content from 0 - 40 at.% were sputtered at various N2/Ar flow ratios in the range of 0 - 0.48. The as deposited films were additionally annealed in argon at 700 °C and vacuum at 900 °C. Analysis of mechanical properties was performed using the regular nanoindentation and short duration nanoindentation creep test (600 s).Hardness of the a-SiCxNy films increases with the decrease of nitrogen content from approx. 19 GPa (a-Si30C30N40) to 22 GPa (a-SiC). Annealing of the films in inert atmosphere or vacuum leads to the increase of both the hardness and the elastic modulus. This increase is more pronounced for the SiC film than for the SiCN films. The nanoindentation creep test (600 s) showed that the rate of the steady-state creep growths with the increase of nitrogen content.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.662.95