Loading…

Voltammetric pH Nanosensor

Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid–liquid, liquid–liquid, and liquid–gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intr...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2015-12, Vol.87 (23), p.11641-11645
Main Authors: Michalak, Magdalena, Kurel, Malgorzata, Jedraszko, Justyna, Toczydlowska, Diana, Wittstock, Gunther, Opallo, Marcin, Nogala, Wojciech
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83
cites cdi_FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83
container_end_page 11645
container_issue 23
container_start_page 11641
container_title Analytical chemistry (Washington)
container_volume 87
creator Michalak, Magdalena
Kurel, Malgorzata
Jedraszko, Justyna
Toczydlowska, Diana
Wittstock, Gunther
Opallo, Marcin
Nogala, Wojciech
description Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid–liquid, liquid–liquid, and liquid–gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (−54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH–) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions.
doi_str_mv 10.1021/acs.analchem.5b03482
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793242466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793242466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMotq7-AREpePGydfKxk-xRilqh6EW9hmw2wZb9qMnuwX_vlrYKHkQYmMvzvsM8hFxQmFJg9MbYODWNqey7q6dZAVwodkDGNGOQolLskIwBgKdMAozISYwrAEqB4jEZMcwoSoVjcv7WVp2pa9eFpZ2s55Mn07TRNbENp-TImyq6s91OyOv93ctsni6eHx5nt4vUCIFdyiV3vkAuUflSOvSIxjrvc2_zzNMyZ6w0CiyWwuaFKUuTG6myAoVCx73iCbne9q5D-9G72Ol6Ga2rKtO4to-aypwzwQTiP1A-fM4k4wN69QtdtX0YfG0okTMUfJiEiC1lQxtjcF6vw7I24VNT0BvNetCs95r1TvMQu9yV90Xtyu_Q3usAwBbYxH8O_9X5BUpTikU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749264364</pqid></control><display><type>article</type><title>Voltammetric pH Nanosensor</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Michalak, Magdalena ; Kurel, Malgorzata ; Jedraszko, Justyna ; Toczydlowska, Diana ; Wittstock, Gunther ; Opallo, Marcin ; Nogala, Wojciech</creator><creatorcontrib>Michalak, Magdalena ; Kurel, Malgorzata ; Jedraszko, Justyna ; Toczydlowska, Diana ; Wittstock, Gunther ; Opallo, Marcin ; Nogala, Wojciech</creatorcontrib><description>Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid–liquid, liquid–liquid, and liquid–gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (−54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH–) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b03482</identifier><identifier>PMID: 26516786</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Assessments ; Buffers ; Carbon ; Catalysis ; Chemical vapor deposition ; Corrosion ; Electrodes ; Liquid-liquid extraction ; Microfluidics ; Nanostructure ; Quartz</subject><ispartof>Analytical chemistry (Washington), 2015-12, Vol.87 (23), p.11641-11645</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 1, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83</citedby><cites>FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26516786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michalak, Magdalena</creatorcontrib><creatorcontrib>Kurel, Malgorzata</creatorcontrib><creatorcontrib>Jedraszko, Justyna</creatorcontrib><creatorcontrib>Toczydlowska, Diana</creatorcontrib><creatorcontrib>Wittstock, Gunther</creatorcontrib><creatorcontrib>Opallo, Marcin</creatorcontrib><creatorcontrib>Nogala, Wojciech</creatorcontrib><title>Voltammetric pH Nanosensor</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid–liquid, liquid–liquid, and liquid–gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (−54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH–) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions.</description><subject>Adsorption</subject><subject>Assessments</subject><subject>Buffers</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chemical vapor deposition</subject><subject>Corrosion</subject><subject>Electrodes</subject><subject>Liquid-liquid extraction</subject><subject>Microfluidics</subject><subject>Nanostructure</subject><subject>Quartz</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMotq7-AREpePGydfKxk-xRilqh6EW9hmw2wZb9qMnuwX_vlrYKHkQYmMvzvsM8hFxQmFJg9MbYODWNqey7q6dZAVwodkDGNGOQolLskIwBgKdMAozISYwrAEqB4jEZMcwoSoVjcv7WVp2pa9eFpZ2s55Mn07TRNbENp-TImyq6s91OyOv93ctsni6eHx5nt4vUCIFdyiV3vkAuUflSOvSIxjrvc2_zzNMyZ6w0CiyWwuaFKUuTG6myAoVCx73iCbne9q5D-9G72Ol6Ga2rKtO4to-aypwzwQTiP1A-fM4k4wN69QtdtX0YfG0okTMUfJiEiC1lQxtjcF6vw7I24VNT0BvNetCs95r1TvMQu9yV90Xtyu_Q3usAwBbYxH8O_9X5BUpTikU</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Michalak, Magdalena</creator><creator>Kurel, Malgorzata</creator><creator>Jedraszko, Justyna</creator><creator>Toczydlowska, Diana</creator><creator>Wittstock, Gunther</creator><creator>Opallo, Marcin</creator><creator>Nogala, Wojciech</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20151201</creationdate><title>Voltammetric pH Nanosensor</title><author>Michalak, Magdalena ; Kurel, Malgorzata ; Jedraszko, Justyna ; Toczydlowska, Diana ; Wittstock, Gunther ; Opallo, Marcin ; Nogala, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>Assessments</topic><topic>Buffers</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chemical vapor deposition</topic><topic>Corrosion</topic><topic>Electrodes</topic><topic>Liquid-liquid extraction</topic><topic>Microfluidics</topic><topic>Nanostructure</topic><topic>Quartz</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalak, Magdalena</creatorcontrib><creatorcontrib>Kurel, Malgorzata</creatorcontrib><creatorcontrib>Jedraszko, Justyna</creatorcontrib><creatorcontrib>Toczydlowska, Diana</creatorcontrib><creatorcontrib>Wittstock, Gunther</creatorcontrib><creatorcontrib>Opallo, Marcin</creatorcontrib><creatorcontrib>Nogala, Wojciech</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalak, Magdalena</au><au>Kurel, Malgorzata</au><au>Jedraszko, Justyna</au><au>Toczydlowska, Diana</au><au>Wittstock, Gunther</au><au>Opallo, Marcin</au><au>Nogala, Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltammetric pH Nanosensor</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>87</volume><issue>23</issue><spage>11641</spage><epage>11645</epage><pages>11641-11645</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid–liquid, liquid–liquid, and liquid–gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (−54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH–) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26516786</pmid><doi>10.1021/acs.analchem.5b03482</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2015-12, Vol.87 (23), p.11641-11645
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1793242466
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Adsorption
Assessments
Buffers
Carbon
Catalysis
Chemical vapor deposition
Corrosion
Electrodes
Liquid-liquid extraction
Microfluidics
Nanostructure
Quartz
title Voltammetric pH Nanosensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltammetric%20pH%20Nanosensor&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Michalak,%20Magdalena&rft.date=2015-12-01&rft.volume=87&rft.issue=23&rft.spage=11641&rft.epage=11645&rft.pages=11641-11645&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b03482&rft_dat=%3Cproquest_cross%3E1793242466%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1749264364&rft_id=info:pmid/26516786&rfr_iscdi=true