Loading…
Voltammetric pH Nanosensor
Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid–liquid, liquid–liquid, and liquid–gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intr...
Saved in:
Published in: | Analytical chemistry (Washington) 2015-12, Vol.87 (23), p.11641-11645 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83 |
---|---|
cites | cdi_FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83 |
container_end_page | 11645 |
container_issue | 23 |
container_start_page | 11641 |
container_title | Analytical chemistry (Washington) |
container_volume | 87 |
creator | Michalak, Magdalena Kurel, Malgorzata Jedraszko, Justyna Toczydlowska, Diana Wittstock, Gunther Opallo, Marcin Nogala, Wojciech |
description | Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid–liquid, liquid–liquid, and liquid–gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (−54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH–) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions. |
doi_str_mv | 10.1021/acs.analchem.5b03482 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793242466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793242466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMotq7-AREpePGydfKxk-xRilqh6EW9hmw2wZb9qMnuwX_vlrYKHkQYmMvzvsM8hFxQmFJg9MbYODWNqey7q6dZAVwodkDGNGOQolLskIwBgKdMAozISYwrAEqB4jEZMcwoSoVjcv7WVp2pa9eFpZ2s55Mn07TRNbENp-TImyq6s91OyOv93ctsni6eHx5nt4vUCIFdyiV3vkAuUflSOvSIxjrvc2_zzNMyZ6w0CiyWwuaFKUuTG6myAoVCx73iCbne9q5D-9G72Ol6Ga2rKtO4to-aypwzwQTiP1A-fM4k4wN69QtdtX0YfG0okTMUfJiEiC1lQxtjcF6vw7I24VNT0BvNetCs95r1TvMQu9yV90Xtyu_Q3usAwBbYxH8O_9X5BUpTikU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749264364</pqid></control><display><type>article</type><title>Voltammetric pH Nanosensor</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Michalak, Magdalena ; Kurel, Malgorzata ; Jedraszko, Justyna ; Toczydlowska, Diana ; Wittstock, Gunther ; Opallo, Marcin ; Nogala, Wojciech</creator><creatorcontrib>Michalak, Magdalena ; Kurel, Malgorzata ; Jedraszko, Justyna ; Toczydlowska, Diana ; Wittstock, Gunther ; Opallo, Marcin ; Nogala, Wojciech</creatorcontrib><description>Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid–liquid, liquid–liquid, and liquid–gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (−54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH–) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b03482</identifier><identifier>PMID: 26516786</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Assessments ; Buffers ; Carbon ; Catalysis ; Chemical vapor deposition ; Corrosion ; Electrodes ; Liquid-liquid extraction ; Microfluidics ; Nanostructure ; Quartz</subject><ispartof>Analytical chemistry (Washington), 2015-12, Vol.87 (23), p.11641-11645</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 1, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83</citedby><cites>FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26516786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michalak, Magdalena</creatorcontrib><creatorcontrib>Kurel, Malgorzata</creatorcontrib><creatorcontrib>Jedraszko, Justyna</creatorcontrib><creatorcontrib>Toczydlowska, Diana</creatorcontrib><creatorcontrib>Wittstock, Gunther</creatorcontrib><creatorcontrib>Opallo, Marcin</creatorcontrib><creatorcontrib>Nogala, Wojciech</creatorcontrib><title>Voltammetric pH Nanosensor</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid–liquid, liquid–liquid, and liquid–gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (−54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH–) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions.</description><subject>Adsorption</subject><subject>Assessments</subject><subject>Buffers</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chemical vapor deposition</subject><subject>Corrosion</subject><subject>Electrodes</subject><subject>Liquid-liquid extraction</subject><subject>Microfluidics</subject><subject>Nanostructure</subject><subject>Quartz</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMotq7-AREpePGydfKxk-xRilqh6EW9hmw2wZb9qMnuwX_vlrYKHkQYmMvzvsM8hFxQmFJg9MbYODWNqey7q6dZAVwodkDGNGOQolLskIwBgKdMAozISYwrAEqB4jEZMcwoSoVjcv7WVp2pa9eFpZ2s55Mn07TRNbENp-TImyq6s91OyOv93ctsni6eHx5nt4vUCIFdyiV3vkAuUflSOvSIxjrvc2_zzNMyZ6w0CiyWwuaFKUuTG6myAoVCx73iCbne9q5D-9G72Ol6Ga2rKtO4to-aypwzwQTiP1A-fM4k4wN69QtdtX0YfG0okTMUfJiEiC1lQxtjcF6vw7I24VNT0BvNetCs95r1TvMQu9yV90Xtyu_Q3usAwBbYxH8O_9X5BUpTikU</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Michalak, Magdalena</creator><creator>Kurel, Malgorzata</creator><creator>Jedraszko, Justyna</creator><creator>Toczydlowska, Diana</creator><creator>Wittstock, Gunther</creator><creator>Opallo, Marcin</creator><creator>Nogala, Wojciech</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20151201</creationdate><title>Voltammetric pH Nanosensor</title><author>Michalak, Magdalena ; Kurel, Malgorzata ; Jedraszko, Justyna ; Toczydlowska, Diana ; Wittstock, Gunther ; Opallo, Marcin ; Nogala, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>Assessments</topic><topic>Buffers</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chemical vapor deposition</topic><topic>Corrosion</topic><topic>Electrodes</topic><topic>Liquid-liquid extraction</topic><topic>Microfluidics</topic><topic>Nanostructure</topic><topic>Quartz</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalak, Magdalena</creatorcontrib><creatorcontrib>Kurel, Malgorzata</creatorcontrib><creatorcontrib>Jedraszko, Justyna</creatorcontrib><creatorcontrib>Toczydlowska, Diana</creatorcontrib><creatorcontrib>Wittstock, Gunther</creatorcontrib><creatorcontrib>Opallo, Marcin</creatorcontrib><creatorcontrib>Nogala, Wojciech</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalak, Magdalena</au><au>Kurel, Malgorzata</au><au>Jedraszko, Justyna</au><au>Toczydlowska, Diana</au><au>Wittstock, Gunther</au><au>Opallo, Marcin</au><au>Nogala, Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltammetric pH Nanosensor</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>87</volume><issue>23</issue><spage>11641</spage><epage>11645</epage><pages>11641-11645</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid–liquid, liquid–liquid, and liquid–gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (−54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH–) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26516786</pmid><doi>10.1021/acs.analchem.5b03482</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2015-12, Vol.87 (23), p.11641-11645 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793242466 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Adsorption Assessments Buffers Carbon Catalysis Chemical vapor deposition Corrosion Electrodes Liquid-liquid extraction Microfluidics Nanostructure Quartz |
title | Voltammetric pH Nanosensor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltammetric%20pH%20Nanosensor&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Michalak,%20Magdalena&rft.date=2015-12-01&rft.volume=87&rft.issue=23&rft.spage=11641&rft.epage=11645&rft.pages=11641-11645&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b03482&rft_dat=%3Cproquest_cross%3E1793242466%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a446t-373efb63768fd7e6f66aceff9fc95f1d922da80c6d4c9badda9a785b6486e3f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1749264364&rft_id=info:pmid/26516786&rfr_iscdi=true |