Loading…
Visual descriptors for scene categorization: experimental evaluation
Humans are endowed with the ability to grasp the overall meaning or the gist of a complex visual scene at a glance. We need only a fraction of a second to decide if a scene is indoors, outdoors, on a busy street, or on a clear beach. In recent years, computational gist recognition or scene categoriz...
Saved in:
Published in: | The Artificial intelligence review 2016-03, Vol.45 (3), p.333-368 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Humans are endowed with the ability to grasp the overall meaning or the gist of a complex visual scene at a glance. We need only a fraction of a second to decide if a scene is indoors, outdoors, on a busy street, or on a clear beach. In recent years, computational gist recognition or scene categorization has been actively pursued, given its numerous applications in image and video search, surveillance, and assistive navigation. Many visual descriptors have been developed to address the challenges in scene categorization, including the large number of semantic categories and the tremendous variations caused by imaging conditions. This paper provides a critical review of visual descriptors used for scene categorization, from both methodological and experimental perspectives. We present an empirical study conducted on four benchmark data sets assessing the classification accuracy and class separability of state-of-the-art visual descriptors. |
---|---|
ISSN: | 0269-2821 1573-7462 |
DOI: | 10.1007/s10462-015-9448-4 |