Loading…

Structure and strain variation in InGaN interlayers grown by PAMBE at low substrate temperatures

We have considered the structural properties of InGaN thin interlayers with thicknesses from 1 up to 40 nm, grown by plasma assisted molecular beam epitaxy (PAMBE) at substrate temperatures ∼500 °C. Quantitative high resolution transmission electron microscopy (HRTEM) techniques were employed for th...

Full description

Saved in:
Bibliographic Details
Published in:Physica Status Solidi. B: Basic Solid State Physics 2015-05, Vol.252 (5), p.1155-1162
Main Authors: Bazioti, C., Papadomanolaki, E., Kehagias, Th, Androulidaki, M., Dimitrakopulos, G. P., Iliopoulos, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4947-c5cd246296797b2a917b97964f69fbf25decf86f446d9b011b511bec5052567d3
cites cdi_FETCH-LOGICAL-c4947-c5cd246296797b2a917b97964f69fbf25decf86f446d9b011b511bec5052567d3
container_end_page 1162
container_issue 5
container_start_page 1155
container_title Physica Status Solidi. B: Basic Solid State Physics
container_volume 252
creator Bazioti, C.
Papadomanolaki, E.
Kehagias, Th
Androulidaki, M.
Dimitrakopulos, G. P.
Iliopoulos, E.
description We have considered the structural properties of InGaN thin interlayers with thicknesses from 1 up to 40 nm, grown by plasma assisted molecular beam epitaxy (PAMBE) at substrate temperatures ∼500 °C. Quantitative high resolution transmission electron microscopy (HRTEM) techniques were employed for the study of the structural characteristics and strain relaxation. Based on nanoscale strain measurements, it was determined that the indium content of the layers increased with increasing thickness under identical growth conditions. Layer thickness was larger than nominal up to the onset of strain relaxation. This behavior, as well as the roughening of the upper interface of the layers, was attributed to indium segregation. After the onset of plastic strain relaxation, indium incorporation increases at a slower rate with thickness. A multi‐quantum well (MQW) heterostructure deposited at low temperature exhibited roughening of the InGaN layers and indium accumulation at troughs, concurrent with low defect content, resulting in improved carrier localization.
doi_str_mv 10.1002/pssb.201451597
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793244364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793244364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4947-c5cd246296797b2a917b97964f69fbf25decf86f446d9b011b511bec5052567d3</originalsourceid><addsrcrecordid>eNqFkM9PwjAcxRujiYhePffoZdjftUcgCCSAJKgkXmq3dWY6Nmw7cf-9IxjizcM33_eS93mHB8A1Rj2MELndeh_3CMKMY67kCehgTnBEFcenoIOoRBFWkpyDC-_fEUISU9wBr6vg6iTUzkJTptAHZ_ISfhmXm5BXJWzNtBybRSuCdYVprPPwzVW7EsYNXPbngxE0ARbVDvo63uPBwmA3W9uqttVfgrPMFN5e_f4ueLofPQ4n0exhPB32Z1HCFJNRwpOUMEGUkErGxCgsYyWVYJlQWZwRntokuxMZYyJVMcI45u3ZhCNOuJAp7YKbQ-_WVZ-19UFvcp_YojClrWqvsVSUMEYFa6O9QzRxlffOZnrr8o1xjcZI76fU-yn1ccoWUAdglxe2-Setl6vV4C8bHdjcB_t9ZI370EJSyfV6MdYvMzp_XtOJVvQH0CGILA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793244364</pqid></control><display><type>article</type><title>Structure and strain variation in InGaN interlayers grown by PAMBE at low substrate temperatures</title><source>Wiley</source><creator>Bazioti, C. ; Papadomanolaki, E. ; Kehagias, Th ; Androulidaki, M. ; Dimitrakopulos, G. P. ; Iliopoulos, E.</creator><creatorcontrib>Bazioti, C. ; Papadomanolaki, E. ; Kehagias, Th ; Androulidaki, M. ; Dimitrakopulos, G. P. ; Iliopoulos, E.</creatorcontrib><description>We have considered the structural properties of InGaN thin interlayers with thicknesses from 1 up to 40 nm, grown by plasma assisted molecular beam epitaxy (PAMBE) at substrate temperatures ∼500 °C. Quantitative high resolution transmission electron microscopy (HRTEM) techniques were employed for the study of the structural characteristics and strain relaxation. Based on nanoscale strain measurements, it was determined that the indium content of the layers increased with increasing thickness under identical growth conditions. Layer thickness was larger than nominal up to the onset of strain relaxation. This behavior, as well as the roughening of the upper interface of the layers, was attributed to indium segregation. After the onset of plastic strain relaxation, indium incorporation increases at a slower rate with thickness. A multi‐quantum well (MQW) heterostructure deposited at low temperature exhibited roughening of the InGaN layers and indium accumulation at troughs, concurrent with low defect content, resulting in improved carrier localization.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201451597</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Indium ; Indium gallium nitrides ; InGaN ; Interlayers ; molecular beam epitaxy ; Nanostructure ; Roughening ; segregation ; Segregations ; Strain ; Strain relaxation ; transmission electron microscopy</subject><ispartof>Physica Status Solidi. B: Basic Solid State Physics, 2015-05, Vol.252 (5), p.1155-1162</ispartof><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4947-c5cd246296797b2a917b97964f69fbf25decf86f446d9b011b511bec5052567d3</citedby><cites>FETCH-LOGICAL-c4947-c5cd246296797b2a917b97964f69fbf25decf86f446d9b011b511bec5052567d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bazioti, C.</creatorcontrib><creatorcontrib>Papadomanolaki, E.</creatorcontrib><creatorcontrib>Kehagias, Th</creatorcontrib><creatorcontrib>Androulidaki, M.</creatorcontrib><creatorcontrib>Dimitrakopulos, G. P.</creatorcontrib><creatorcontrib>Iliopoulos, E.</creatorcontrib><title>Structure and strain variation in InGaN interlayers grown by PAMBE at low substrate temperatures</title><title>Physica Status Solidi. B: Basic Solid State Physics</title><addtitle>Phys. Status Solidi B</addtitle><description>We have considered the structural properties of InGaN thin interlayers with thicknesses from 1 up to 40 nm, grown by plasma assisted molecular beam epitaxy (PAMBE) at substrate temperatures ∼500 °C. Quantitative high resolution transmission electron microscopy (HRTEM) techniques were employed for the study of the structural characteristics and strain relaxation. Based on nanoscale strain measurements, it was determined that the indium content of the layers increased with increasing thickness under identical growth conditions. Layer thickness was larger than nominal up to the onset of strain relaxation. This behavior, as well as the roughening of the upper interface of the layers, was attributed to indium segregation. After the onset of plastic strain relaxation, indium incorporation increases at a slower rate with thickness. A multi‐quantum well (MQW) heterostructure deposited at low temperature exhibited roughening of the InGaN layers and indium accumulation at troughs, concurrent with low defect content, resulting in improved carrier localization.</description><subject>Indium</subject><subject>Indium gallium nitrides</subject><subject>InGaN</subject><subject>Interlayers</subject><subject>molecular beam epitaxy</subject><subject>Nanostructure</subject><subject>Roughening</subject><subject>segregation</subject><subject>Segregations</subject><subject>Strain</subject><subject>Strain relaxation</subject><subject>transmission electron microscopy</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM9PwjAcxRujiYhePffoZdjftUcgCCSAJKgkXmq3dWY6Nmw7cf-9IxjizcM33_eS93mHB8A1Rj2MELndeh_3CMKMY67kCehgTnBEFcenoIOoRBFWkpyDC-_fEUISU9wBr6vg6iTUzkJTptAHZ_ISfhmXm5BXJWzNtBybRSuCdYVprPPwzVW7EsYNXPbngxE0ARbVDvo63uPBwmA3W9uqttVfgrPMFN5e_f4ueLofPQ4n0exhPB32Z1HCFJNRwpOUMEGUkErGxCgsYyWVYJlQWZwRntokuxMZYyJVMcI45u3ZhCNOuJAp7YKbQ-_WVZ-19UFvcp_YojClrWqvsVSUMEYFa6O9QzRxlffOZnrr8o1xjcZI76fU-yn1ccoWUAdglxe2-Setl6vV4C8bHdjcB_t9ZI370EJSyfV6MdYvMzp_XtOJVvQH0CGILA</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Bazioti, C.</creator><creator>Papadomanolaki, E.</creator><creator>Kehagias, Th</creator><creator>Androulidaki, M.</creator><creator>Dimitrakopulos, G. P.</creator><creator>Iliopoulos, E.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201505</creationdate><title>Structure and strain variation in InGaN interlayers grown by PAMBE at low substrate temperatures</title><author>Bazioti, C. ; Papadomanolaki, E. ; Kehagias, Th ; Androulidaki, M. ; Dimitrakopulos, G. P. ; Iliopoulos, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4947-c5cd246296797b2a917b97964f69fbf25decf86f446d9b011b511bec5052567d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Indium</topic><topic>Indium gallium nitrides</topic><topic>InGaN</topic><topic>Interlayers</topic><topic>molecular beam epitaxy</topic><topic>Nanostructure</topic><topic>Roughening</topic><topic>segregation</topic><topic>Segregations</topic><topic>Strain</topic><topic>Strain relaxation</topic><topic>transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazioti, C.</creatorcontrib><creatorcontrib>Papadomanolaki, E.</creatorcontrib><creatorcontrib>Kehagias, Th</creatorcontrib><creatorcontrib>Androulidaki, M.</creatorcontrib><creatorcontrib>Dimitrakopulos, G. P.</creatorcontrib><creatorcontrib>Iliopoulos, E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi. B: Basic Solid State Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazioti, C.</au><au>Papadomanolaki, E.</au><au>Kehagias, Th</au><au>Androulidaki, M.</au><au>Dimitrakopulos, G. P.</au><au>Iliopoulos, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and strain variation in InGaN interlayers grown by PAMBE at low substrate temperatures</atitle><jtitle>Physica Status Solidi. B: Basic Solid State Physics</jtitle><addtitle>Phys. Status Solidi B</addtitle><date>2015-05</date><risdate>2015</risdate><volume>252</volume><issue>5</issue><spage>1155</spage><epage>1162</epage><pages>1155-1162</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>We have considered the structural properties of InGaN thin interlayers with thicknesses from 1 up to 40 nm, grown by plasma assisted molecular beam epitaxy (PAMBE) at substrate temperatures ∼500 °C. Quantitative high resolution transmission electron microscopy (HRTEM) techniques were employed for the study of the structural characteristics and strain relaxation. Based on nanoscale strain measurements, it was determined that the indium content of the layers increased with increasing thickness under identical growth conditions. Layer thickness was larger than nominal up to the onset of strain relaxation. This behavior, as well as the roughening of the upper interface of the layers, was attributed to indium segregation. After the onset of plastic strain relaxation, indium incorporation increases at a slower rate with thickness. A multi‐quantum well (MQW) heterostructure deposited at low temperature exhibited roughening of the InGaN layers and indium accumulation at troughs, concurrent with low defect content, resulting in improved carrier localization.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pssb.201451597</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi. B: Basic Solid State Physics, 2015-05, Vol.252 (5), p.1155-1162
issn 0370-1972
1521-3951
language eng
recordid cdi_proquest_miscellaneous_1793244364
source Wiley
subjects Indium
Indium gallium nitrides
InGaN
Interlayers
molecular beam epitaxy
Nanostructure
Roughening
segregation
Segregations
Strain
Strain relaxation
transmission electron microscopy
title Structure and strain variation in InGaN interlayers grown by PAMBE at low substrate temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20strain%20variation%20in%20InGaN%20interlayers%20grown%20by%20PAMBE%20at%20low%20substrate%20temperatures&rft.jtitle=Physica%20Status%20Solidi.%20B:%20Basic%20Solid%20State%20Physics&rft.au=Bazioti,%20C.&rft.date=2015-05&rft.volume=252&rft.issue=5&rft.spage=1155&rft.epage=1162&rft.pages=1155-1162&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201451597&rft_dat=%3Cproquest_cross%3E1793244364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4947-c5cd246296797b2a917b97964f69fbf25decf86f446d9b011b511bec5052567d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793244364&rft_id=info:pmid/&rfr_iscdi=true