Loading…
Constructions of complementarity functions and merit functions for circular cone complementarity problem
In this paper, we consider complementarity problem associated with circular cone, which is a type of nonsymmetric cone complementarity problem. The main purpose of this paper is to show the readers how to construct complementarity functions for such nonsymmetric cone complementarity problem, and pro...
Saved in:
Published in: | Computational optimization and applications 2016-03, Vol.63 (2), p.495-522 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c419t-2d7d9bdc4d2cb4aee472234052191ddae14b8e4adfd855fcd8f16d9aeec761983 |
---|---|
cites | cdi_FETCH-LOGICAL-c419t-2d7d9bdc4d2cb4aee472234052191ddae14b8e4adfd855fcd8f16d9aeec761983 |
container_end_page | 522 |
container_issue | 2 |
container_start_page | 495 |
container_title | Computational optimization and applications |
container_volume | 63 |
creator | Miao, Xin-He Guo, Shengjuan Qi, Nuo Chen, Jein-Shan |
description | In this paper, we consider complementarity problem associated with circular cone, which is a type of nonsymmetric cone complementarity problem. The main purpose of this paper is to show the readers how to construct complementarity functions for such nonsymmetric cone complementarity problem, and propose a few merit functions for solving such a complementarity problem. In addition, we study the conditions under which the level sets of the corresponding merit functions are bounded, and we also show that these merit functions provide an error bound for the circular cone complementarity problem. These results ensure that the sequence generated by descent methods has at least one accumulation point, and build up a theoretical basis for designing the merit function method for solving circular cone complementarity problem. |
doi_str_mv | 10.1007/s10589-015-9781-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793245236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3945500551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-2d7d9bdc4d2cb4aee472234052191ddae14b8e4adfd855fcd8f16d9aeec761983</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqXwAGyRWFgMPo6dxCOquEmVWGC2HF8gVWIXOxn69rhKhwrEdG7ff87Rj9A1kDsgpL5PQHgjMAGORd0AhhO0AF6XmDaCnaIFEbTCFSHlObpIaUMIEXVJF-hrFXwa46THLidFcIUOw7a3g_Wjit24K9zkD0PlTTHY3DzquRAL3UU99Sonwds_-m0Mba4v0ZlTfbJXh7hEH0-P76sXvH57fl09rLFmIEZMTW1EazQzVLdMWctqSktGOAUBxigLrG0sU8aZhnOnTeOgMiKDuq5ANOUS3c57893vyaZRDl3Stu-Vt2FKEmpRUsZpWWX05he6CVP0-btMVVRwyjO3RDBTOoaUonVyG7tBxZ0EIvfey9l7mb2Xe-8lZA2dNSmz_tPGo83_in4AjXiKIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762952552</pqid></control><display><type>article</type><title>Constructions of complementarity functions and merit functions for circular cone complementarity problem</title><source>ABI/INFORM Collection</source><source>Business Source Ultimate</source><source>Springer Nature</source><creator>Miao, Xin-He ; Guo, Shengjuan ; Qi, Nuo ; Chen, Jein-Shan</creator><creatorcontrib>Miao, Xin-He ; Guo, Shengjuan ; Qi, Nuo ; Chen, Jein-Shan</creatorcontrib><description>In this paper, we consider complementarity problem associated with circular cone, which is a type of nonsymmetric cone complementarity problem. The main purpose of this paper is to show the readers how to construct complementarity functions for such nonsymmetric cone complementarity problem, and propose a few merit functions for solving such a complementarity problem. In addition, we study the conditions under which the level sets of the corresponding merit functions are bounded, and we also show that these merit functions provide an error bound for the circular cone complementarity problem. These results ensure that the sequence generated by descent methods has at least one accumulation point, and build up a theoretical basis for designing the merit function method for solving circular cone complementarity problem.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-015-9781-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accumulation ; Algorithms ; Circular cones ; Construction ; Convex and Discrete Geometry ; Error analysis ; Management Science ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Readers ; Statistics ; Studies</subject><ispartof>Computational optimization and applications, 2016-03, Vol.63 (2), p.495-522</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-2d7d9bdc4d2cb4aee472234052191ddae14b8e4adfd855fcd8f16d9aeec761983</citedby><cites>FETCH-LOGICAL-c419t-2d7d9bdc4d2cb4aee472234052191ddae14b8e4adfd855fcd8f16d9aeec761983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1762952552/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1762952552?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74666</link.rule.ids></links><search><creatorcontrib>Miao, Xin-He</creatorcontrib><creatorcontrib>Guo, Shengjuan</creatorcontrib><creatorcontrib>Qi, Nuo</creatorcontrib><creatorcontrib>Chen, Jein-Shan</creatorcontrib><title>Constructions of complementarity functions and merit functions for circular cone complementarity problem</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>In this paper, we consider complementarity problem associated with circular cone, which is a type of nonsymmetric cone complementarity problem. The main purpose of this paper is to show the readers how to construct complementarity functions for such nonsymmetric cone complementarity problem, and propose a few merit functions for solving such a complementarity problem. In addition, we study the conditions under which the level sets of the corresponding merit functions are bounded, and we also show that these merit functions provide an error bound for the circular cone complementarity problem. These results ensure that the sequence generated by descent methods has at least one accumulation point, and build up a theoretical basis for designing the merit function method for solving circular cone complementarity problem.</description><subject>Accumulation</subject><subject>Algorithms</subject><subject>Circular cones</subject><subject>Construction</subject><subject>Convex and Discrete Geometry</subject><subject>Error analysis</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Readers</subject><subject>Statistics</subject><subject>Studies</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kLtOwzAUhi0EEqXwAGyRWFgMPo6dxCOquEmVWGC2HF8gVWIXOxn69rhKhwrEdG7ff87Rj9A1kDsgpL5PQHgjMAGORd0AhhO0AF6XmDaCnaIFEbTCFSHlObpIaUMIEXVJF-hrFXwa46THLidFcIUOw7a3g_Wjit24K9zkD0PlTTHY3DzquRAL3UU99Sonwds_-m0Mba4v0ZlTfbJXh7hEH0-P76sXvH57fl09rLFmIEZMTW1EazQzVLdMWctqSktGOAUBxigLrG0sU8aZhnOnTeOgMiKDuq5ANOUS3c57893vyaZRDl3Stu-Vt2FKEmpRUsZpWWX05he6CVP0-btMVVRwyjO3RDBTOoaUonVyG7tBxZ0EIvfey9l7mb2Xe-8lZA2dNSmz_tPGo83_in4AjXiKIQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Miao, Xin-He</creator><creator>Guo, Shengjuan</creator><creator>Qi, Nuo</creator><creator>Chen, Jein-Shan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160301</creationdate><title>Constructions of complementarity functions and merit functions for circular cone complementarity problem</title><author>Miao, Xin-He ; Guo, Shengjuan ; Qi, Nuo ; Chen, Jein-Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-2d7d9bdc4d2cb4aee472234052191ddae14b8e4adfd855fcd8f16d9aeec761983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accumulation</topic><topic>Algorithms</topic><topic>Circular cones</topic><topic>Construction</topic><topic>Convex and Discrete Geometry</topic><topic>Error analysis</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Readers</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Xin-He</creatorcontrib><creatorcontrib>Guo, Shengjuan</creatorcontrib><creatorcontrib>Qi, Nuo</creatorcontrib><creatorcontrib>Chen, Jein-Shan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Xin-He</au><au>Guo, Shengjuan</au><au>Qi, Nuo</au><au>Chen, Jein-Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructions of complementarity functions and merit functions for circular cone complementarity problem</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>63</volume><issue>2</issue><spage>495</spage><epage>522</epage><pages>495-522</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>In this paper, we consider complementarity problem associated with circular cone, which is a type of nonsymmetric cone complementarity problem. The main purpose of this paper is to show the readers how to construct complementarity functions for such nonsymmetric cone complementarity problem, and propose a few merit functions for solving such a complementarity problem. In addition, we study the conditions under which the level sets of the corresponding merit functions are bounded, and we also show that these merit functions provide an error bound for the circular cone complementarity problem. These results ensure that the sequence generated by descent methods has at least one accumulation point, and build up a theoretical basis for designing the merit function method for solving circular cone complementarity problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-015-9781-1</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2016-03, Vol.63 (2), p.495-522 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793245236 |
source | ABI/INFORM Collection; Business Source Ultimate; Springer Nature |
subjects | Accumulation Algorithms Circular cones Construction Convex and Discrete Geometry Error analysis Management Science Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Readers Statistics Studies |
title | Constructions of complementarity functions and merit functions for circular cone complementarity problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructions%20of%20complementarity%20functions%20and%20merit%20functions%20for%20circular%20cone%20complementarity%20problem&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Miao,%20Xin-He&rft.date=2016-03-01&rft.volume=63&rft.issue=2&rft.spage=495&rft.epage=522&rft.pages=495-522&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-015-9781-1&rft_dat=%3Cproquest_cross%3E3945500551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-2d7d9bdc4d2cb4aee472234052191ddae14b8e4adfd855fcd8f16d9aeec761983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762952552&rft_id=info:pmid/&rfr_iscdi=true |