Loading…

Microstructural characterization and mechanical properties of functionally graded Al2024/SiC composites prepared by powder metallurgy techniques

Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of increasing SiC content and number of layers of Al2024/SiC FGMs on the microstructure...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of Nonferrous Metals Society of China 2015-11, Vol.25 (11), p.3569-3577
Main Authors: ERDEMIR, F., CANAKCI, A., VAROL, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of increasing SiC content and number of layers of Al2024/SiC FGMs on the microstructure and mechanical properties of the composite were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) analyses indicated that Al and SiC were dominant components as well as others such as Al4C3, CuAl2, and CuMgAl2. A maximum bending strength of 1400 MPa was obtained for two-layered FGMs which contained 40% SiC (mass fraction) on top layer. A decrease in microhardness and changes in porosity were discussed in relation to the SiC content and the intermetallics formation. The results show that the increase in microhardness values and intermetallic formation play a major role on the improvement of mechanical properties of the composites.
ISSN:1003-6326
DOI:10.1016/S1003-6326(15)63996-6