Loading…
Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields
Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, includin...
Saved in:
Published in: | International journal of solids and structures 2016-03, Vol.81, p.262-273 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073 |
container_end_page | 273 |
container_issue | |
container_start_page | 262 |
container_title | International journal of solids and structures |
container_volume | 81 |
creator | Su, Y.P. Wang, H.M. Zhang, C.L. Chen, W.Q. |
description | Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement. Such biasing fields make the originally isotropic electroactive material behave during its incremental motion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel functions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as well as the geometrical parameters of the hollow cylinder have significant influences on the wave propagation characteristics. |
doi_str_mv | 10.1016/j.ijsolstr.2015.12.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793247661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002076831500493X</els_id><sourcerecordid>1793247661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073</originalsourceid><addsrcrecordid>eNqFkEFvGyEUhFHVSHWd_IWIYy-7BZZlvbdUUZtWipQemjNi4eE8iwUXsFP_-2zk9JzLzGVmpPkIueas5Yyrr7sWdyWFUnMrGO9bLlrGug9kxTfD2Agu1UeyYkywZlCb7hP5XMqOMSa7ka1I_Z3T3mxNxRRp8jSm2Jh_WE7zDDWjpc_mCIVipCYu6jFiBVqSrxQC2JqTsRWPQJ9SCOmZ2lPA6CDTw5uiT3mmE5qCcUs9QnDlklx4EwpcvfmaPP74_uf2Z3P_cPfr9tt9YyXvayNG6bjlsvOKj9JLJbkC6J0dJucdjEZulHFTrxQT_eg3gxxEB8wqI7vJsqFbky_n3X1Ofw9Qqp6xWAjBREiHovkwdkIOSvElqs5Rm1MpGbzeZ5xNPmnO9CtmvdP_MetXzJoLvWBeijfnIixHjghZF4sQLTjMCx_tEr438QIpPIzz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793247661</pqid></control><display><type>article</type><title>Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields</title><source>Elsevier</source><creator>Su, Y.P. ; Wang, H.M. ; Zhang, C.L. ; Chen, W.Q.</creator><creatorcontrib>Su, Y.P. ; Wang, H.M. ; Zhang, C.L. ; Chen, W.Q.</creatorcontrib><description>Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement. Such biasing fields make the originally isotropic electroactive material behave during its incremental motion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel functions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as well as the geometrical parameters of the hollow cylinder have significant influences on the wave propagation characteristics.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2015.12.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biasing field ; Cylinders ; Displacement ; Electroactive materials ; Electroelasticity ; Hollow cylinder ; Linear incremental theory ; Mathematical analysis ; Mathematical models ; Non-axisymmetric wave ; Nonlinearity ; Piezoelectricity ; Wave propagation</subject><ispartof>International journal of solids and structures, 2016-03, Vol.81, p.262-273</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073</citedby><cites>FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Su, Y.P.</creatorcontrib><creatorcontrib>Wang, H.M.</creatorcontrib><creatorcontrib>Zhang, C.L.</creatorcontrib><creatorcontrib>Chen, W.Q.</creatorcontrib><title>Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields</title><title>International journal of solids and structures</title><description>Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement. Such biasing fields make the originally isotropic electroactive material behave during its incremental motion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel functions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as well as the geometrical parameters of the hollow cylinder have significant influences on the wave propagation characteristics.</description><subject>Biasing field</subject><subject>Cylinders</subject><subject>Displacement</subject><subject>Electroactive materials</subject><subject>Electroelasticity</subject><subject>Hollow cylinder</subject><subject>Linear incremental theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-axisymmetric wave</subject><subject>Nonlinearity</subject><subject>Piezoelectricity</subject><subject>Wave propagation</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvGyEUhFHVSHWd_IWIYy-7BZZlvbdUUZtWipQemjNi4eE8iwUXsFP_-2zk9JzLzGVmpPkIueas5Yyrr7sWdyWFUnMrGO9bLlrGug9kxTfD2Agu1UeyYkywZlCb7hP5XMqOMSa7ka1I_Z3T3mxNxRRp8jSm2Jh_WE7zDDWjpc_mCIVipCYu6jFiBVqSrxQC2JqTsRWPQJ9SCOmZ2lPA6CDTw5uiT3mmE5qCcUs9QnDlklx4EwpcvfmaPP74_uf2Z3P_cPfr9tt9YyXvayNG6bjlsvOKj9JLJbkC6J0dJucdjEZulHFTrxQT_eg3gxxEB8wqI7vJsqFbky_n3X1Ofw9Qqp6xWAjBREiHovkwdkIOSvElqs5Rm1MpGbzeZ5xNPmnO9CtmvdP_MetXzJoLvWBeijfnIixHjghZF4sQLTjMCx_tEr438QIpPIzz</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Su, Y.P.</creator><creator>Wang, H.M.</creator><creator>Zhang, C.L.</creator><creator>Chen, W.Q.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20160301</creationdate><title>Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields</title><author>Su, Y.P. ; Wang, H.M. ; Zhang, C.L. ; Chen, W.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biasing field</topic><topic>Cylinders</topic><topic>Displacement</topic><topic>Electroactive materials</topic><topic>Electroelasticity</topic><topic>Hollow cylinder</topic><topic>Linear incremental theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-axisymmetric wave</topic><topic>Nonlinearity</topic><topic>Piezoelectricity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Y.P.</creatorcontrib><creatorcontrib>Wang, H.M.</creatorcontrib><creatorcontrib>Zhang, C.L.</creatorcontrib><creatorcontrib>Chen, W.Q.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Y.P.</au><au>Wang, H.M.</au><au>Zhang, C.L.</au><au>Chen, W.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields</atitle><jtitle>International journal of solids and structures</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>81</volume><spage>262</spage><epage>273</epage><pages>262-273</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement. Such biasing fields make the originally isotropic electroactive material behave during its incremental motion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel functions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as well as the geometrical parameters of the hollow cylinder have significant influences on the wave propagation characteristics.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2015.12.003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2016-03, Vol.81, p.262-273 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793247661 |
source | Elsevier |
subjects | Biasing field Cylinders Displacement Electroactive materials Electroelasticity Hollow cylinder Linear incremental theory Mathematical analysis Mathematical models Non-axisymmetric wave Nonlinearity Piezoelectricity Wave propagation |
title | Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20non-axisymmetric%20waves%20in%20an%20infinite%20soft%20electroactive%20hollow%20cylinder%20under%20uniform%20biasing%20fields&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Su,%20Y.P.&rft.date=2016-03-01&rft.volume=81&rft.spage=262&rft.epage=273&rft.pages=262-273&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2015.12.003&rft_dat=%3Cproquest_cross%3E1793247661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793247661&rft_id=info:pmid/&rfr_iscdi=true |