Loading…

Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields

Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, includin...

Full description

Saved in:
Bibliographic Details
Published in:International journal of solids and structures 2016-03, Vol.81, p.262-273
Main Authors: Su, Y.P., Wang, H.M., Zhang, C.L., Chen, W.Q.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073
cites cdi_FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073
container_end_page 273
container_issue
container_start_page 262
container_title International journal of solids and structures
container_volume 81
creator Su, Y.P.
Wang, H.M.
Zhang, C.L.
Chen, W.Q.
description Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement. Such biasing fields make the originally isotropic electroactive material behave during its incremental motion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel functions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as well as the geometrical parameters of the hollow cylinder have significant influences on the wave propagation characteristics.
doi_str_mv 10.1016/j.ijsolstr.2015.12.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793247661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002076831500493X</els_id><sourcerecordid>1793247661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073</originalsourceid><addsrcrecordid>eNqFkEFvGyEUhFHVSHWd_IWIYy-7BZZlvbdUUZtWipQemjNi4eE8iwUXsFP_-2zk9JzLzGVmpPkIueas5Yyrr7sWdyWFUnMrGO9bLlrGug9kxTfD2Agu1UeyYkywZlCb7hP5XMqOMSa7ka1I_Z3T3mxNxRRp8jSm2Jh_WE7zDDWjpc_mCIVipCYu6jFiBVqSrxQC2JqTsRWPQJ9SCOmZ2lPA6CDTw5uiT3mmE5qCcUs9QnDlklx4EwpcvfmaPP74_uf2Z3P_cPfr9tt9YyXvayNG6bjlsvOKj9JLJbkC6J0dJucdjEZulHFTrxQT_eg3gxxEB8wqI7vJsqFbky_n3X1Ofw9Qqp6xWAjBREiHovkwdkIOSvElqs5Rm1MpGbzeZ5xNPmnO9CtmvdP_MetXzJoLvWBeijfnIixHjghZF4sQLTjMCx_tEr438QIpPIzz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793247661</pqid></control><display><type>article</type><title>Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields</title><source>Elsevier</source><creator>Su, Y.P. ; Wang, H.M. ; Zhang, C.L. ; Chen, W.Q.</creator><creatorcontrib>Su, Y.P. ; Wang, H.M. ; Zhang, C.L. ; Chen, W.Q.</creatorcontrib><description>Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement. Such biasing fields make the originally isotropic electroactive material behave during its incremental motion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel functions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as well as the geometrical parameters of the hollow cylinder have significant influences on the wave propagation characteristics.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2015.12.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biasing field ; Cylinders ; Displacement ; Electroactive materials ; Electroelasticity ; Hollow cylinder ; Linear incremental theory ; Mathematical analysis ; Mathematical models ; Non-axisymmetric wave ; Nonlinearity ; Piezoelectricity ; Wave propagation</subject><ispartof>International journal of solids and structures, 2016-03, Vol.81, p.262-273</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073</citedby><cites>FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Su, Y.P.</creatorcontrib><creatorcontrib>Wang, H.M.</creatorcontrib><creatorcontrib>Zhang, C.L.</creatorcontrib><creatorcontrib>Chen, W.Q.</creatorcontrib><title>Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields</title><title>International journal of solids and structures</title><description>Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement. Such biasing fields make the originally isotropic electroactive material behave during its incremental motion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel functions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as well as the geometrical parameters of the hollow cylinder have significant influences on the wave propagation characteristics.</description><subject>Biasing field</subject><subject>Cylinders</subject><subject>Displacement</subject><subject>Electroactive materials</subject><subject>Electroelasticity</subject><subject>Hollow cylinder</subject><subject>Linear incremental theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-axisymmetric wave</subject><subject>Nonlinearity</subject><subject>Piezoelectricity</subject><subject>Wave propagation</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvGyEUhFHVSHWd_IWIYy-7BZZlvbdUUZtWipQemjNi4eE8iwUXsFP_-2zk9JzLzGVmpPkIueas5Yyrr7sWdyWFUnMrGO9bLlrGug9kxTfD2Agu1UeyYkywZlCb7hP5XMqOMSa7ka1I_Z3T3mxNxRRp8jSm2Jh_WE7zDDWjpc_mCIVipCYu6jFiBVqSrxQC2JqTsRWPQJ9SCOmZ2lPA6CDTw5uiT3mmE5qCcUs9QnDlklx4EwpcvfmaPP74_uf2Z3P_cPfr9tt9YyXvayNG6bjlsvOKj9JLJbkC6J0dJucdjEZulHFTrxQT_eg3gxxEB8wqI7vJsqFbky_n3X1Ofw9Qqp6xWAjBREiHovkwdkIOSvElqs5Rm1MpGbzeZ5xNPmnO9CtmvdP_MetXzJoLvWBeijfnIixHjghZF4sQLTjMCx_tEr438QIpPIzz</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Su, Y.P.</creator><creator>Wang, H.M.</creator><creator>Zhang, C.L.</creator><creator>Chen, W.Q.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20160301</creationdate><title>Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields</title><author>Su, Y.P. ; Wang, H.M. ; Zhang, C.L. ; Chen, W.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biasing field</topic><topic>Cylinders</topic><topic>Displacement</topic><topic>Electroactive materials</topic><topic>Electroelasticity</topic><topic>Hollow cylinder</topic><topic>Linear incremental theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-axisymmetric wave</topic><topic>Nonlinearity</topic><topic>Piezoelectricity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Y.P.</creatorcontrib><creatorcontrib>Wang, H.M.</creatorcontrib><creatorcontrib>Zhang, C.L.</creatorcontrib><creatorcontrib>Chen, W.Q.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Y.P.</au><au>Wang, H.M.</au><au>Zhang, C.L.</au><au>Chen, W.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields</atitle><jtitle>International journal of solids and structures</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>81</volume><spage>262</spage><epage>273</epage><pages>262-273</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Based on Dorfmann and Ogden's nonlinear theory of electroelasticity and the associated linear incremental theory, the non-axisymmetric wave propagation in an infinite incompressible soft electroactive hollow cylinder under biasing fields is investigated. The biasing fields are uniform, including an axial pre-stretch and a radial stretch in the plane perpendicular to the axis of the cylinder as well as an axial electric displacement. Such biasing fields make the originally isotropic electroactive material behave during its incremental motion like a conventional transversely isotropic piezoelectric material, hence greatly facilitating the following analysis. The three-dimensional equations of wave motion in cylindrical coordinates are derived and exactly solved by introducing three displacement functions. The exact solution is expressed in terms of Bessel functions, and explicit frequency equations are presented in different cases. For a prototype nonlinear model of electroactive material, numerical results are given and discussed. It is found that the initial biasing fields as well as the geometrical parameters of the hollow cylinder have significant influences on the wave propagation characteristics.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2015.12.003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2016-03, Vol.81, p.262-273
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_1793247661
source Elsevier
subjects Biasing field
Cylinders
Displacement
Electroactive materials
Electroelasticity
Hollow cylinder
Linear incremental theory
Mathematical analysis
Mathematical models
Non-axisymmetric wave
Nonlinearity
Piezoelectricity
Wave propagation
title Propagation of non-axisymmetric waves in an infinite soft electroactive hollow cylinder under uniform biasing fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20non-axisymmetric%20waves%20in%20an%20infinite%20soft%20electroactive%20hollow%20cylinder%20under%20uniform%20biasing%20fields&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Su,%20Y.P.&rft.date=2016-03-01&rft.volume=81&rft.spage=262&rft.epage=273&rft.pages=262-273&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2015.12.003&rft_dat=%3Cproquest_cross%3E1793247661%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-294d1c143f6194f46416ee5dc7bdfde9a486adb5660259f874723e0c6a43bc073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793247661&rft_id=info:pmid/&rfr_iscdi=true