Loading…
Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation
CuInSe2 (CIS) solar cells are promising candidates for thin film photovoltaic applications, one key limitation in their performance is surface recombination in these thin films. We demonstrate that passivating CIS films with Trioctylphosphine Sulfide (TOP:S) solution increases photoluminescence (PL)...
Saved in:
Published in: | Acta materialia 2016-03, Vol.106, p.171-181 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903 |
---|---|
cites | cdi_FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903 |
container_end_page | 181 |
container_issue | |
container_start_page | 171 |
container_title | Acta materialia |
container_volume | 106 |
creator | Luo, Shi Eisler, Carissa Wong, Tsun-Hsin Xiao, Hai Lin, Chuan-En Wu, Tsung-Ta Shen, Chang-Hong Shieh, Jia-Min Tsai, Chuang-Chuang Liu, Chee-Wee Atwater, Harry A. Goddard, William A. Lee, Jiun-Haw Greer, Julia R. |
description | CuInSe2 (CIS) solar cells are promising candidates for thin film photovoltaic applications, one key limitation in their performance is surface recombination in these thin films. We demonstrate that passivating CIS films with Trioctylphosphine Sulfide (TOP:S) solution increases photoluminescence (PL) intensity by a factor of ∼30, which suggests that this passivation significantly reduces surface recombination. X-ray photoelectron spectroscopy (XPS) reveals that TOP:S forms both –S and –P bonds on the CIS film surface, which leads to a ∼4-fold increase in the surface Na peak intensity. This value is significantly higher than what would be expected from high temperature annealing alone, which has been linked to improvements in surface morphology and device efficiency in CIGS solar cells. We use Energy-Dispersive X-ray Spectroscopy (EDS) to measure the solid-state transport of Na within CIS films with and without passivation. EDS spectra on CIS film cross-sections reveals a saddle-shaped Na profile in the as-fabricated films and a concentration gradient towards the film surface in the passivated films, with 20% higher surface Na content compared with the unpassivated films. We employ Hybrid (B3PW91) Density Functional Theory (DFT) to gain insight into energetics of Na defects, which demonstrate a driving force for Na diffusion from bulk towards the surface. DFT Calculations with TOP:S-like molecules on the same surfaces reveal a ∼ 1eV lower formation energy for the NaCu defect. The experiments and computations in this work suggest that TOP:S passivation promotes Na diffusion towards CIS film surfaces and stabilizes surface Na defects, which leads to the observed substantial decrease in surface recombination.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2016.01.021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793249832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645416300209</els_id><sourcerecordid>1793249832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhQdRsD5-gpBlXcyY10waNyLFR0FQaF2HNHNDU2YmYzJT0F9vanXtJsnJvedc7pdlVwQXBJPqZltoM-hWDwVNssCkwJQcZRMyEyynvGTH6c1KmVe85KfZWYxbjAkVHE-yr-XY9wFidL5D3qI4BqsNoADGt2vX6WFfcB2aj4tuCRRN54vlNRo26cu6po1o5zRaBefN8Nn0Gx_7VAK0HBvrakDT1evbbTL85fY6jdr9pF5kJ1Y3ES5_7_Ps_fFhNX_OX16fFvP7l9wwToccSkIxrkCAsELOtFhjITUYXVlZYctoLbSkMyC15IKYpBjHfC2MxGR_sPNsesjtg_8YIQ6qddFA0-gO_BgVEZJRLmeMptby0GqCjzGAVX1wrQ6fimC1Z6226pe12rNWmKjEOvnuDj5Ie-wcBBWNg85A7RLIQdXe_ZPwDbvsivU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793249832</pqid></control><display><type>article</type><title>Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation</title><source>Elsevier</source><creator>Luo, Shi ; Eisler, Carissa ; Wong, Tsun-Hsin ; Xiao, Hai ; Lin, Chuan-En ; Wu, Tsung-Ta ; Shen, Chang-Hong ; Shieh, Jia-Min ; Tsai, Chuang-Chuang ; Liu, Chee-Wee ; Atwater, Harry A. ; Goddard, William A. ; Lee, Jiun-Haw ; Greer, Julia R.</creator><creatorcontrib>Luo, Shi ; Eisler, Carissa ; Wong, Tsun-Hsin ; Xiao, Hai ; Lin, Chuan-En ; Wu, Tsung-Ta ; Shen, Chang-Hong ; Shieh, Jia-Min ; Tsai, Chuang-Chuang ; Liu, Chee-Wee ; Atwater, Harry A. ; Goddard, William A. ; Lee, Jiun-Haw ; Greer, Julia R.</creatorcontrib><description>CuInSe2 (CIS) solar cells are promising candidates for thin film photovoltaic applications, one key limitation in their performance is surface recombination in these thin films. We demonstrate that passivating CIS films with Trioctylphosphine Sulfide (TOP:S) solution increases photoluminescence (PL) intensity by a factor of ∼30, which suggests that this passivation significantly reduces surface recombination. X-ray photoelectron spectroscopy (XPS) reveals that TOP:S forms both –S and –P bonds on the CIS film surface, which leads to a ∼4-fold increase in the surface Na peak intensity. This value is significantly higher than what would be expected from high temperature annealing alone, which has been linked to improvements in surface morphology and device efficiency in CIGS solar cells. We use Energy-Dispersive X-ray Spectroscopy (EDS) to measure the solid-state transport of Na within CIS films with and without passivation. EDS spectra on CIS film cross-sections reveals a saddle-shaped Na profile in the as-fabricated films and a concentration gradient towards the film surface in the passivated films, with 20% higher surface Na content compared with the unpassivated films. We employ Hybrid (B3PW91) Density Functional Theory (DFT) to gain insight into energetics of Na defects, which demonstrate a driving force for Na diffusion from bulk towards the surface. DFT Calculations with TOP:S-like molecules on the same surfaces reveal a ∼ 1eV lower formation energy for the NaCu defect. The experiments and computations in this work suggest that TOP:S passivation promotes Na diffusion towards CIS film surfaces and stabilizes surface Na defects, which leads to the observed substantial decrease in surface recombination.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2016.01.021</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>ANNEALING PROCESSES ; CIGS ; COPPER INDIUM SELENIDE ; CuInSe2 (CIS) solar cells ; Defects ; DFT calculations ; DIFFUSION ; Na diffusion ; PASSIVATION ; Photovoltaic cells ; Solar cells ; STEM-EDS ; SULFIDES ; Thin film passivation ; THIN FILMS ; X RAYS</subject><ispartof>Acta materialia, 2016-03, Vol.106, p.171-181</ispartof><rights>2016 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903</citedby><cites>FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Eisler, Carissa</creatorcontrib><creatorcontrib>Wong, Tsun-Hsin</creatorcontrib><creatorcontrib>Xiao, Hai</creatorcontrib><creatorcontrib>Lin, Chuan-En</creatorcontrib><creatorcontrib>Wu, Tsung-Ta</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Tsai, Chuang-Chuang</creatorcontrib><creatorcontrib>Liu, Chee-Wee</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Goddard, William A.</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><creatorcontrib>Greer, Julia R.</creatorcontrib><title>Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation</title><title>Acta materialia</title><description>CuInSe2 (CIS) solar cells are promising candidates for thin film photovoltaic applications, one key limitation in their performance is surface recombination in these thin films. We demonstrate that passivating CIS films with Trioctylphosphine Sulfide (TOP:S) solution increases photoluminescence (PL) intensity by a factor of ∼30, which suggests that this passivation significantly reduces surface recombination. X-ray photoelectron spectroscopy (XPS) reveals that TOP:S forms both –S and –P bonds on the CIS film surface, which leads to a ∼4-fold increase in the surface Na peak intensity. This value is significantly higher than what would be expected from high temperature annealing alone, which has been linked to improvements in surface morphology and device efficiency in CIGS solar cells. We use Energy-Dispersive X-ray Spectroscopy (EDS) to measure the solid-state transport of Na within CIS films with and without passivation. EDS spectra on CIS film cross-sections reveals a saddle-shaped Na profile in the as-fabricated films and a concentration gradient towards the film surface in the passivated films, with 20% higher surface Na content compared with the unpassivated films. We employ Hybrid (B3PW91) Density Functional Theory (DFT) to gain insight into energetics of Na defects, which demonstrate a driving force for Na diffusion from bulk towards the surface. DFT Calculations with TOP:S-like molecules on the same surfaces reveal a ∼ 1eV lower formation energy for the NaCu defect. The experiments and computations in this work suggest that TOP:S passivation promotes Na diffusion towards CIS film surfaces and stabilizes surface Na defects, which leads to the observed substantial decrease in surface recombination.
[Display omitted]</description><subject>ANNEALING PROCESSES</subject><subject>CIGS</subject><subject>COPPER INDIUM SELENIDE</subject><subject>CuInSe2 (CIS) solar cells</subject><subject>Defects</subject><subject>DFT calculations</subject><subject>DIFFUSION</subject><subject>Na diffusion</subject><subject>PASSIVATION</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>STEM-EDS</subject><subject>SULFIDES</subject><subject>Thin film passivation</subject><subject>THIN FILMS</subject><subject>X RAYS</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhQdRsD5-gpBlXcyY10waNyLFR0FQaF2HNHNDU2YmYzJT0F9vanXtJsnJvedc7pdlVwQXBJPqZltoM-hWDwVNssCkwJQcZRMyEyynvGTH6c1KmVe85KfZWYxbjAkVHE-yr-XY9wFidL5D3qI4BqsNoADGt2vX6WFfcB2aj4tuCRRN54vlNRo26cu6po1o5zRaBefN8Nn0Gx_7VAK0HBvrakDT1evbbTL85fY6jdr9pF5kJ1Y3ES5_7_Ps_fFhNX_OX16fFvP7l9wwToccSkIxrkCAsELOtFhjITUYXVlZYctoLbSkMyC15IKYpBjHfC2MxGR_sPNsesjtg_8YIQ6qddFA0-gO_BgVEZJRLmeMptby0GqCjzGAVX1wrQ6fimC1Z6226pe12rNWmKjEOvnuDj5Ie-wcBBWNg85A7RLIQdXe_ZPwDbvsivU</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Luo, Shi</creator><creator>Eisler, Carissa</creator><creator>Wong, Tsun-Hsin</creator><creator>Xiao, Hai</creator><creator>Lin, Chuan-En</creator><creator>Wu, Tsung-Ta</creator><creator>Shen, Chang-Hong</creator><creator>Shieh, Jia-Min</creator><creator>Tsai, Chuang-Chuang</creator><creator>Liu, Chee-Wee</creator><creator>Atwater, Harry A.</creator><creator>Goddard, William A.</creator><creator>Lee, Jiun-Haw</creator><creator>Greer, Julia R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>201603</creationdate><title>Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation</title><author>Luo, Shi ; Eisler, Carissa ; Wong, Tsun-Hsin ; Xiao, Hai ; Lin, Chuan-En ; Wu, Tsung-Ta ; Shen, Chang-Hong ; Shieh, Jia-Min ; Tsai, Chuang-Chuang ; Liu, Chee-Wee ; Atwater, Harry A. ; Goddard, William A. ; Lee, Jiun-Haw ; Greer, Julia R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ANNEALING PROCESSES</topic><topic>CIGS</topic><topic>COPPER INDIUM SELENIDE</topic><topic>CuInSe2 (CIS) solar cells</topic><topic>Defects</topic><topic>DFT calculations</topic><topic>DIFFUSION</topic><topic>Na diffusion</topic><topic>PASSIVATION</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>STEM-EDS</topic><topic>SULFIDES</topic><topic>Thin film passivation</topic><topic>THIN FILMS</topic><topic>X RAYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Eisler, Carissa</creatorcontrib><creatorcontrib>Wong, Tsun-Hsin</creatorcontrib><creatorcontrib>Xiao, Hai</creatorcontrib><creatorcontrib>Lin, Chuan-En</creatorcontrib><creatorcontrib>Wu, Tsung-Ta</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Tsai, Chuang-Chuang</creatorcontrib><creatorcontrib>Liu, Chee-Wee</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Goddard, William A.</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><creatorcontrib>Greer, Julia R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Shi</au><au>Eisler, Carissa</au><au>Wong, Tsun-Hsin</au><au>Xiao, Hai</au><au>Lin, Chuan-En</au><au>Wu, Tsung-Ta</au><au>Shen, Chang-Hong</au><au>Shieh, Jia-Min</au><au>Tsai, Chuang-Chuang</au><au>Liu, Chee-Wee</au><au>Atwater, Harry A.</au><au>Goddard, William A.</au><au>Lee, Jiun-Haw</au><au>Greer, Julia R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation</atitle><jtitle>Acta materialia</jtitle><date>2016-03</date><risdate>2016</risdate><volume>106</volume><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>CuInSe2 (CIS) solar cells are promising candidates for thin film photovoltaic applications, one key limitation in their performance is surface recombination in these thin films. We demonstrate that passivating CIS films with Trioctylphosphine Sulfide (TOP:S) solution increases photoluminescence (PL) intensity by a factor of ∼30, which suggests that this passivation significantly reduces surface recombination. X-ray photoelectron spectroscopy (XPS) reveals that TOP:S forms both –S and –P bonds on the CIS film surface, which leads to a ∼4-fold increase in the surface Na peak intensity. This value is significantly higher than what would be expected from high temperature annealing alone, which has been linked to improvements in surface morphology and device efficiency in CIGS solar cells. We use Energy-Dispersive X-ray Spectroscopy (EDS) to measure the solid-state transport of Na within CIS films with and without passivation. EDS spectra on CIS film cross-sections reveals a saddle-shaped Na profile in the as-fabricated films and a concentration gradient towards the film surface in the passivated films, with 20% higher surface Na content compared with the unpassivated films. We employ Hybrid (B3PW91) Density Functional Theory (DFT) to gain insight into energetics of Na defects, which demonstrate a driving force for Na diffusion from bulk towards the surface. DFT Calculations with TOP:S-like molecules on the same surfaces reveal a ∼ 1eV lower formation energy for the NaCu defect. The experiments and computations in this work suggest that TOP:S passivation promotes Na diffusion towards CIS film surfaces and stabilizes surface Na defects, which leads to the observed substantial decrease in surface recombination.
[Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2016.01.021</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2016-03, Vol.106, p.171-181 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793249832 |
source | Elsevier |
subjects | ANNEALING PROCESSES CIGS COPPER INDIUM SELENIDE CuInSe2 (CIS) solar cells Defects DFT calculations DIFFUSION Na diffusion PASSIVATION Photovoltaic cells Solar cells STEM-EDS SULFIDES Thin film passivation THIN FILMS X RAYS |
title | Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20surface%20recombination%20in%20CuInSe2%20(CIS)%20thin%20films%20via%20Trioctylphosphine%20Sulfide%20(TOP:S)%20surface%20passivation&rft.jtitle=Acta%20materialia&rft.au=Luo,%20Shi&rft.date=2016-03&rft.volume=106&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2016.01.021&rft_dat=%3Cproquest_cross%3E1793249832%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793249832&rft_id=info:pmid/&rfr_iscdi=true |