Loading…

Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation

CuInSe2 (CIS) solar cells are promising candidates for thin film photovoltaic applications, one key limitation in their performance is surface recombination in these thin films. We demonstrate that passivating CIS films with Trioctylphosphine Sulfide (TOP:S) solution increases photoluminescence (PL)...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2016-03, Vol.106, p.171-181
Main Authors: Luo, Shi, Eisler, Carissa, Wong, Tsun-Hsin, Xiao, Hai, Lin, Chuan-En, Wu, Tsung-Ta, Shen, Chang-Hong, Shieh, Jia-Min, Tsai, Chuang-Chuang, Liu, Chee-Wee, Atwater, Harry A., Goddard, William A., Lee, Jiun-Haw, Greer, Julia R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903
cites cdi_FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903
container_end_page 181
container_issue
container_start_page 171
container_title Acta materialia
container_volume 106
creator Luo, Shi
Eisler, Carissa
Wong, Tsun-Hsin
Xiao, Hai
Lin, Chuan-En
Wu, Tsung-Ta
Shen, Chang-Hong
Shieh, Jia-Min
Tsai, Chuang-Chuang
Liu, Chee-Wee
Atwater, Harry A.
Goddard, William A.
Lee, Jiun-Haw
Greer, Julia R.
description CuInSe2 (CIS) solar cells are promising candidates for thin film photovoltaic applications, one key limitation in their performance is surface recombination in these thin films. We demonstrate that passivating CIS films with Trioctylphosphine Sulfide (TOP:S) solution increases photoluminescence (PL) intensity by a factor of ∼30, which suggests that this passivation significantly reduces surface recombination. X-ray photoelectron spectroscopy (XPS) reveals that TOP:S forms both –S and –P bonds on the CIS film surface, which leads to a ∼4-fold increase in the surface Na peak intensity. This value is significantly higher than what would be expected from high temperature annealing alone, which has been linked to improvements in surface morphology and device efficiency in CIGS solar cells. We use Energy-Dispersive X-ray Spectroscopy (EDS) to measure the solid-state transport of Na within CIS films with and without passivation. EDS spectra on CIS film cross-sections reveals a saddle-shaped Na profile in the as-fabricated films and a concentration gradient towards the film surface in the passivated films, with 20% higher surface Na content compared with the unpassivated films. We employ Hybrid (B3PW91) Density Functional Theory (DFT) to gain insight into energetics of Na defects, which demonstrate a driving force for Na diffusion from bulk towards the surface. DFT Calculations with TOP:S-like molecules on the same surfaces reveal a ∼ 1eV lower formation energy for the NaCu defect. The experiments and computations in this work suggest that TOP:S passivation promotes Na diffusion towards CIS film surfaces and stabilizes surface Na defects, which leads to the observed substantial decrease in surface recombination. [Display omitted]
doi_str_mv 10.1016/j.actamat.2016.01.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793249832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645416300209</els_id><sourcerecordid>1793249832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhQdRsD5-gpBlXcyY10waNyLFR0FQaF2HNHNDU2YmYzJT0F9vanXtJsnJvedc7pdlVwQXBJPqZltoM-hWDwVNssCkwJQcZRMyEyynvGTH6c1KmVe85KfZWYxbjAkVHE-yr-XY9wFidL5D3qI4BqsNoADGt2vX6WFfcB2aj4tuCRRN54vlNRo26cu6po1o5zRaBefN8Nn0Gx_7VAK0HBvrakDT1evbbTL85fY6jdr9pF5kJ1Y3ES5_7_Ps_fFhNX_OX16fFvP7l9wwToccSkIxrkCAsELOtFhjITUYXVlZYctoLbSkMyC15IKYpBjHfC2MxGR_sPNsesjtg_8YIQ6qddFA0-gO_BgVEZJRLmeMptby0GqCjzGAVX1wrQ6fimC1Z6226pe12rNWmKjEOvnuDj5Ie-wcBBWNg85A7RLIQdXe_ZPwDbvsivU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793249832</pqid></control><display><type>article</type><title>Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation</title><source>Elsevier</source><creator>Luo, Shi ; Eisler, Carissa ; Wong, Tsun-Hsin ; Xiao, Hai ; Lin, Chuan-En ; Wu, Tsung-Ta ; Shen, Chang-Hong ; Shieh, Jia-Min ; Tsai, Chuang-Chuang ; Liu, Chee-Wee ; Atwater, Harry A. ; Goddard, William A. ; Lee, Jiun-Haw ; Greer, Julia R.</creator><creatorcontrib>Luo, Shi ; Eisler, Carissa ; Wong, Tsun-Hsin ; Xiao, Hai ; Lin, Chuan-En ; Wu, Tsung-Ta ; Shen, Chang-Hong ; Shieh, Jia-Min ; Tsai, Chuang-Chuang ; Liu, Chee-Wee ; Atwater, Harry A. ; Goddard, William A. ; Lee, Jiun-Haw ; Greer, Julia R.</creatorcontrib><description>CuInSe2 (CIS) solar cells are promising candidates for thin film photovoltaic applications, one key limitation in their performance is surface recombination in these thin films. We demonstrate that passivating CIS films with Trioctylphosphine Sulfide (TOP:S) solution increases photoluminescence (PL) intensity by a factor of ∼30, which suggests that this passivation significantly reduces surface recombination. X-ray photoelectron spectroscopy (XPS) reveals that TOP:S forms both –S and –P bonds on the CIS film surface, which leads to a ∼4-fold increase in the surface Na peak intensity. This value is significantly higher than what would be expected from high temperature annealing alone, which has been linked to improvements in surface morphology and device efficiency in CIGS solar cells. We use Energy-Dispersive X-ray Spectroscopy (EDS) to measure the solid-state transport of Na within CIS films with and without passivation. EDS spectra on CIS film cross-sections reveals a saddle-shaped Na profile in the as-fabricated films and a concentration gradient towards the film surface in the passivated films, with 20% higher surface Na content compared with the unpassivated films. We employ Hybrid (B3PW91) Density Functional Theory (DFT) to gain insight into energetics of Na defects, which demonstrate a driving force for Na diffusion from bulk towards the surface. DFT Calculations with TOP:S-like molecules on the same surfaces reveal a ∼ 1eV lower formation energy for the NaCu defect. The experiments and computations in this work suggest that TOP:S passivation promotes Na diffusion towards CIS film surfaces and stabilizes surface Na defects, which leads to the observed substantial decrease in surface recombination. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2016.01.021</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>ANNEALING PROCESSES ; CIGS ; COPPER INDIUM SELENIDE ; CuInSe2 (CIS) solar cells ; Defects ; DFT calculations ; DIFFUSION ; Na diffusion ; PASSIVATION ; Photovoltaic cells ; Solar cells ; STEM-EDS ; SULFIDES ; Thin film passivation ; THIN FILMS ; X RAYS</subject><ispartof>Acta materialia, 2016-03, Vol.106, p.171-181</ispartof><rights>2016 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903</citedby><cites>FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Eisler, Carissa</creatorcontrib><creatorcontrib>Wong, Tsun-Hsin</creatorcontrib><creatorcontrib>Xiao, Hai</creatorcontrib><creatorcontrib>Lin, Chuan-En</creatorcontrib><creatorcontrib>Wu, Tsung-Ta</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Tsai, Chuang-Chuang</creatorcontrib><creatorcontrib>Liu, Chee-Wee</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Goddard, William A.</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><creatorcontrib>Greer, Julia R.</creatorcontrib><title>Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation</title><title>Acta materialia</title><description>CuInSe2 (CIS) solar cells are promising candidates for thin film photovoltaic applications, one key limitation in their performance is surface recombination in these thin films. We demonstrate that passivating CIS films with Trioctylphosphine Sulfide (TOP:S) solution increases photoluminescence (PL) intensity by a factor of ∼30, which suggests that this passivation significantly reduces surface recombination. X-ray photoelectron spectroscopy (XPS) reveals that TOP:S forms both –S and –P bonds on the CIS film surface, which leads to a ∼4-fold increase in the surface Na peak intensity. This value is significantly higher than what would be expected from high temperature annealing alone, which has been linked to improvements in surface morphology and device efficiency in CIGS solar cells. We use Energy-Dispersive X-ray Spectroscopy (EDS) to measure the solid-state transport of Na within CIS films with and without passivation. EDS spectra on CIS film cross-sections reveals a saddle-shaped Na profile in the as-fabricated films and a concentration gradient towards the film surface in the passivated films, with 20% higher surface Na content compared with the unpassivated films. We employ Hybrid (B3PW91) Density Functional Theory (DFT) to gain insight into energetics of Na defects, which demonstrate a driving force for Na diffusion from bulk towards the surface. DFT Calculations with TOP:S-like molecules on the same surfaces reveal a ∼ 1eV lower formation energy for the NaCu defect. The experiments and computations in this work suggest that TOP:S passivation promotes Na diffusion towards CIS film surfaces and stabilizes surface Na defects, which leads to the observed substantial decrease in surface recombination. [Display omitted]</description><subject>ANNEALING PROCESSES</subject><subject>CIGS</subject><subject>COPPER INDIUM SELENIDE</subject><subject>CuInSe2 (CIS) solar cells</subject><subject>Defects</subject><subject>DFT calculations</subject><subject>DIFFUSION</subject><subject>Na diffusion</subject><subject>PASSIVATION</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>STEM-EDS</subject><subject>SULFIDES</subject><subject>Thin film passivation</subject><subject>THIN FILMS</subject><subject>X RAYS</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhQdRsD5-gpBlXcyY10waNyLFR0FQaF2HNHNDU2YmYzJT0F9vanXtJsnJvedc7pdlVwQXBJPqZltoM-hWDwVNssCkwJQcZRMyEyynvGTH6c1KmVe85KfZWYxbjAkVHE-yr-XY9wFidL5D3qI4BqsNoADGt2vX6WFfcB2aj4tuCRRN54vlNRo26cu6po1o5zRaBefN8Nn0Gx_7VAK0HBvrakDT1evbbTL85fY6jdr9pF5kJ1Y3ES5_7_Ps_fFhNX_OX16fFvP7l9wwToccSkIxrkCAsELOtFhjITUYXVlZYctoLbSkMyC15IKYpBjHfC2MxGR_sPNsesjtg_8YIQ6qddFA0-gO_BgVEZJRLmeMptby0GqCjzGAVX1wrQ6fimC1Z6226pe12rNWmKjEOvnuDj5Ie-wcBBWNg85A7RLIQdXe_ZPwDbvsivU</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Luo, Shi</creator><creator>Eisler, Carissa</creator><creator>Wong, Tsun-Hsin</creator><creator>Xiao, Hai</creator><creator>Lin, Chuan-En</creator><creator>Wu, Tsung-Ta</creator><creator>Shen, Chang-Hong</creator><creator>Shieh, Jia-Min</creator><creator>Tsai, Chuang-Chuang</creator><creator>Liu, Chee-Wee</creator><creator>Atwater, Harry A.</creator><creator>Goddard, William A.</creator><creator>Lee, Jiun-Haw</creator><creator>Greer, Julia R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>201603</creationdate><title>Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation</title><author>Luo, Shi ; Eisler, Carissa ; Wong, Tsun-Hsin ; Xiao, Hai ; Lin, Chuan-En ; Wu, Tsung-Ta ; Shen, Chang-Hong ; Shieh, Jia-Min ; Tsai, Chuang-Chuang ; Liu, Chee-Wee ; Atwater, Harry A. ; Goddard, William A. ; Lee, Jiun-Haw ; Greer, Julia R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ANNEALING PROCESSES</topic><topic>CIGS</topic><topic>COPPER INDIUM SELENIDE</topic><topic>CuInSe2 (CIS) solar cells</topic><topic>Defects</topic><topic>DFT calculations</topic><topic>DIFFUSION</topic><topic>Na diffusion</topic><topic>PASSIVATION</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>STEM-EDS</topic><topic>SULFIDES</topic><topic>Thin film passivation</topic><topic>THIN FILMS</topic><topic>X RAYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Eisler, Carissa</creatorcontrib><creatorcontrib>Wong, Tsun-Hsin</creatorcontrib><creatorcontrib>Xiao, Hai</creatorcontrib><creatorcontrib>Lin, Chuan-En</creatorcontrib><creatorcontrib>Wu, Tsung-Ta</creatorcontrib><creatorcontrib>Shen, Chang-Hong</creatorcontrib><creatorcontrib>Shieh, Jia-Min</creatorcontrib><creatorcontrib>Tsai, Chuang-Chuang</creatorcontrib><creatorcontrib>Liu, Chee-Wee</creatorcontrib><creatorcontrib>Atwater, Harry A.</creatorcontrib><creatorcontrib>Goddard, William A.</creatorcontrib><creatorcontrib>Lee, Jiun-Haw</creatorcontrib><creatorcontrib>Greer, Julia R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Shi</au><au>Eisler, Carissa</au><au>Wong, Tsun-Hsin</au><au>Xiao, Hai</au><au>Lin, Chuan-En</au><au>Wu, Tsung-Ta</au><au>Shen, Chang-Hong</au><au>Shieh, Jia-Min</au><au>Tsai, Chuang-Chuang</au><au>Liu, Chee-Wee</au><au>Atwater, Harry A.</au><au>Goddard, William A.</au><au>Lee, Jiun-Haw</au><au>Greer, Julia R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation</atitle><jtitle>Acta materialia</jtitle><date>2016-03</date><risdate>2016</risdate><volume>106</volume><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>CuInSe2 (CIS) solar cells are promising candidates for thin film photovoltaic applications, one key limitation in their performance is surface recombination in these thin films. We demonstrate that passivating CIS films with Trioctylphosphine Sulfide (TOP:S) solution increases photoluminescence (PL) intensity by a factor of ∼30, which suggests that this passivation significantly reduces surface recombination. X-ray photoelectron spectroscopy (XPS) reveals that TOP:S forms both –S and –P bonds on the CIS film surface, which leads to a ∼4-fold increase in the surface Na peak intensity. This value is significantly higher than what would be expected from high temperature annealing alone, which has been linked to improvements in surface morphology and device efficiency in CIGS solar cells. We use Energy-Dispersive X-ray Spectroscopy (EDS) to measure the solid-state transport of Na within CIS films with and without passivation. EDS spectra on CIS film cross-sections reveals a saddle-shaped Na profile in the as-fabricated films and a concentration gradient towards the film surface in the passivated films, with 20% higher surface Na content compared with the unpassivated films. We employ Hybrid (B3PW91) Density Functional Theory (DFT) to gain insight into energetics of Na defects, which demonstrate a driving force for Na diffusion from bulk towards the surface. DFT Calculations with TOP:S-like molecules on the same surfaces reveal a ∼ 1eV lower formation energy for the NaCu defect. The experiments and computations in this work suggest that TOP:S passivation promotes Na diffusion towards CIS film surfaces and stabilizes surface Na defects, which leads to the observed substantial decrease in surface recombination. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2016.01.021</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2016-03, Vol.106, p.171-181
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_1793249832
source Elsevier
subjects ANNEALING PROCESSES
CIGS
COPPER INDIUM SELENIDE
CuInSe2 (CIS) solar cells
Defects
DFT calculations
DIFFUSION
Na diffusion
PASSIVATION
Photovoltaic cells
Solar cells
STEM-EDS
SULFIDES
Thin film passivation
THIN FILMS
X RAYS
title Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20surface%20recombination%20in%20CuInSe2%20(CIS)%20thin%20films%20via%20Trioctylphosphine%20Sulfide%20(TOP:S)%20surface%20passivation&rft.jtitle=Acta%20materialia&rft.au=Luo,%20Shi&rft.date=2016-03&rft.volume=106&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2016.01.021&rft_dat=%3Cproquest_cross%3E1793249832%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-e512006e7e7f798a7b079aeca6f960f32d7a928e1d9471cd7a3404b7c9017c903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793249832&rft_id=info:pmid/&rfr_iscdi=true