Loading…

Corner detection using Gabor filters

This study proposes a contour‐based corner detector using the magnitude responses of the imaginary part of the Gabor filters on contours. Unlike the traditional contour‐based methods that detect corners by analysing the shape of the edge contours and searching for local curvature maxima points on pl...

Full description

Saved in:
Bibliographic Details
Published in:IET image processing 2014-11, Vol.8 (11), p.639-646
Main Authors: Zhang, Wei‐Chuan, Wang, Fu‐Ping, Zhu, Lei, Zhou, Zuo‐Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43
cites cdi_FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43
container_end_page 646
container_issue 11
container_start_page 639
container_title IET image processing
container_volume 8
creator Zhang, Wei‐Chuan
Wang, Fu‐Ping
Zhu, Lei
Zhou, Zuo‐Feng
description This study proposes a contour‐based corner detector using the magnitude responses of the imaginary part of the Gabor filters on contours. Unlike the traditional contour‐based methods that detect corners by analysing the shape of the edge contours and searching for local curvature maxima points on planar curves, the proposed corner detector combines the pixels of the edge contours and their corresponding grey‐variation information. Firstly, edge contours are extracted from the original image using Canny edge detector. Secondly, the imaginary parts of the Gabor filters are used to smooth the pixels on the edge contours. At each edge pixel, the magnitude responses at each direction are normalised by their values and the sum of the normalised magnitude response at each direction is used to extract corners from edge contours. Thirdly, both the magnitude response threshold and the angle threshold are used to remove the weak or false corners. Finally, the proposed detector is compared with five state‐of‐the‐art detectors on some grey‐level images. The results from the experiment reveal that the proposed detector is more competitive with respect to detection accuracy, localisation accuracy, affine transforms and noise‐robustness.
doi_str_mv 10.1049/iet-ipr.2013.0641
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793250816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793250816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwA9gyMLCkvBd_xWwQ0VKpEgjBbLmOg4zSpNipUP99XQWxMr37pHvucAi5RpghMHXn3ZD7bZgVgHQGguEJmaDkmCsh5Olf5uqcXMT4BcAVlHxCbqo-dC5ktRucHXzfZbvou89sYdZ9yBrfDi7ES3LWmDa6q987JR_zp_fqOV-9LJbVwyq3VBY0Z7UEBlIarEvFsVElChRlermtLRNKrrkyBoQsSmo4xdLWTNSmQS4cGkan5Hbc3Yb-e-fioDc-Wte2pnP9LmqUihYc0myq4li1oY8xuEZvg9-YsNcI-mhEJyM6GdFHI_poJDH3I_PjW7f_H9DL17ficQ4FR0oPnexlqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793250816</pqid></control><display><type>article</type><title>Corner detection using Gabor filters</title><source>Wiley Online Library Open Access</source><creator>Zhang, Wei‐Chuan ; Wang, Fu‐Ping ; Zhu, Lei ; Zhou, Zuo‐Feng</creator><creatorcontrib>Zhang, Wei‐Chuan ; Wang, Fu‐Ping ; Zhu, Lei ; Zhou, Zuo‐Feng</creatorcontrib><description>This study proposes a contour‐based corner detector using the magnitude responses of the imaginary part of the Gabor filters on contours. Unlike the traditional contour‐based methods that detect corners by analysing the shape of the edge contours and searching for local curvature maxima points on planar curves, the proposed corner detector combines the pixels of the edge contours and their corresponding grey‐variation information. Firstly, edge contours are extracted from the original image using Canny edge detector. Secondly, the imaginary parts of the Gabor filters are used to smooth the pixels on the edge contours. At each edge pixel, the magnitude responses at each direction are normalised by their values and the sum of the normalised magnitude response at each direction is used to extract corners from edge contours. Thirdly, both the magnitude response threshold and the angle threshold are used to remove the weak or false corners. Finally, the proposed detector is compared with five state‐of‐the‐art detectors on some grey‐level images. The results from the experiment reveal that the proposed detector is more competitive with respect to detection accuracy, localisation accuracy, affine transforms and noise‐robustness.</description><identifier>ISSN: 1751-9659</identifier><identifier>ISSN: 1751-9667</identifier><identifier>EISSN: 1751-9667</identifier><identifier>DOI: 10.1049/iet-ipr.2013.0641</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>affine transforms ; afflne transform ; angle threshold ; Canny edge detector ; Contours ; contour‐based corner detection ; Corners ; corresponding grey‐variation information ; detection accuracy ; Detectors ; edge contour shape analysis ; edge detection ; Gabor filter ; Gabor filters ; grey systems ; local curvature maxima points ; localisation accuracy ; magnitude response ; magnitude response threshold ; noise‐robustness ; normalised magnitude response ; Pixels ; planar curve ; Shape ; Thresholds</subject><ispartof>IET image processing, 2014-11, Vol.8 (11), p.639-646</ispartof><rights>2021 The Authors. IET Image Processing published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43</citedby><cites>FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-ipr.2013.0641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-ipr.2013.0641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2013.0641$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Zhang, Wei‐Chuan</creatorcontrib><creatorcontrib>Wang, Fu‐Ping</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><creatorcontrib>Zhou, Zuo‐Feng</creatorcontrib><title>Corner detection using Gabor filters</title><title>IET image processing</title><description>This study proposes a contour‐based corner detector using the magnitude responses of the imaginary part of the Gabor filters on contours. Unlike the traditional contour‐based methods that detect corners by analysing the shape of the edge contours and searching for local curvature maxima points on planar curves, the proposed corner detector combines the pixels of the edge contours and their corresponding grey‐variation information. Firstly, edge contours are extracted from the original image using Canny edge detector. Secondly, the imaginary parts of the Gabor filters are used to smooth the pixels on the edge contours. At each edge pixel, the magnitude responses at each direction are normalised by their values and the sum of the normalised magnitude response at each direction is used to extract corners from edge contours. Thirdly, both the magnitude response threshold and the angle threshold are used to remove the weak or false corners. Finally, the proposed detector is compared with five state‐of‐the‐art detectors on some grey‐level images. The results from the experiment reveal that the proposed detector is more competitive with respect to detection accuracy, localisation accuracy, affine transforms and noise‐robustness.</description><subject>affine transforms</subject><subject>afflne transform</subject><subject>angle threshold</subject><subject>Canny edge detector</subject><subject>Contours</subject><subject>contour‐based corner detection</subject><subject>Corners</subject><subject>corresponding grey‐variation information</subject><subject>detection accuracy</subject><subject>Detectors</subject><subject>edge contour shape analysis</subject><subject>edge detection</subject><subject>Gabor filter</subject><subject>Gabor filters</subject><subject>grey systems</subject><subject>local curvature maxima points</subject><subject>localisation accuracy</subject><subject>magnitude response</subject><subject>magnitude response threshold</subject><subject>noise‐robustness</subject><subject>normalised magnitude response</subject><subject>Pixels</subject><subject>planar curve</subject><subject>Shape</subject><subject>Thresholds</subject><issn>1751-9659</issn><issn>1751-9667</issn><issn>1751-9667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwA9gyMLCkvBd_xWwQ0VKpEgjBbLmOg4zSpNipUP99XQWxMr37pHvucAi5RpghMHXn3ZD7bZgVgHQGguEJmaDkmCsh5Olf5uqcXMT4BcAVlHxCbqo-dC5ktRucHXzfZbvou89sYdZ9yBrfDi7ES3LWmDa6q987JR_zp_fqOV-9LJbVwyq3VBY0Z7UEBlIarEvFsVElChRlermtLRNKrrkyBoQsSmo4xdLWTNSmQS4cGkan5Hbc3Yb-e-fioDc-Wte2pnP9LmqUihYc0myq4li1oY8xuEZvg9-YsNcI-mhEJyM6GdFHI_poJDH3I_PjW7f_H9DL17ficQ4FR0oPnexlqg</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Zhang, Wei‐Chuan</creator><creator>Wang, Fu‐Ping</creator><creator>Zhu, Lei</creator><creator>Zhou, Zuo‐Feng</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201411</creationdate><title>Corner detection using Gabor filters</title><author>Zhang, Wei‐Chuan ; Wang, Fu‐Ping ; Zhu, Lei ; Zhou, Zuo‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>affine transforms</topic><topic>afflne transform</topic><topic>angle threshold</topic><topic>Canny edge detector</topic><topic>Contours</topic><topic>contour‐based corner detection</topic><topic>Corners</topic><topic>corresponding grey‐variation information</topic><topic>detection accuracy</topic><topic>Detectors</topic><topic>edge contour shape analysis</topic><topic>edge detection</topic><topic>Gabor filter</topic><topic>Gabor filters</topic><topic>grey systems</topic><topic>local curvature maxima points</topic><topic>localisation accuracy</topic><topic>magnitude response</topic><topic>magnitude response threshold</topic><topic>noise‐robustness</topic><topic>normalised magnitude response</topic><topic>Pixels</topic><topic>planar curve</topic><topic>Shape</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei‐Chuan</creatorcontrib><creatorcontrib>Wang, Fu‐Ping</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><creatorcontrib>Zhou, Zuo‐Feng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wei‐Chuan</au><au>Wang, Fu‐Ping</au><au>Zhu, Lei</au><au>Zhou, Zuo‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corner detection using Gabor filters</atitle><jtitle>IET image processing</jtitle><date>2014-11</date><risdate>2014</risdate><volume>8</volume><issue>11</issue><spage>639</spage><epage>646</epage><pages>639-646</pages><issn>1751-9659</issn><issn>1751-9667</issn><eissn>1751-9667</eissn><abstract>This study proposes a contour‐based corner detector using the magnitude responses of the imaginary part of the Gabor filters on contours. Unlike the traditional contour‐based methods that detect corners by analysing the shape of the edge contours and searching for local curvature maxima points on planar curves, the proposed corner detector combines the pixels of the edge contours and their corresponding grey‐variation information. Firstly, edge contours are extracted from the original image using Canny edge detector. Secondly, the imaginary parts of the Gabor filters are used to smooth the pixels on the edge contours. At each edge pixel, the magnitude responses at each direction are normalised by their values and the sum of the normalised magnitude response at each direction is used to extract corners from edge contours. Thirdly, both the magnitude response threshold and the angle threshold are used to remove the weak or false corners. Finally, the proposed detector is compared with five state‐of‐the‐art detectors on some grey‐level images. The results from the experiment reveal that the proposed detector is more competitive with respect to detection accuracy, localisation accuracy, affine transforms and noise‐robustness.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-ipr.2013.0641</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-9659
ispartof IET image processing, 2014-11, Vol.8 (11), p.639-646
issn 1751-9659
1751-9667
1751-9667
language eng
recordid cdi_proquest_miscellaneous_1793250816
source Wiley Online Library Open Access
subjects affine transforms
afflne transform
angle threshold
Canny edge detector
Contours
contour‐based corner detection
Corners
corresponding grey‐variation information
detection accuracy
Detectors
edge contour shape analysis
edge detection
Gabor filter
Gabor filters
grey systems
local curvature maxima points
localisation accuracy
magnitude response
magnitude response threshold
noise‐robustness
normalised magnitude response
Pixels
planar curve
Shape
Thresholds
title Corner detection using Gabor filters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corner%20detection%20using%20Gabor%20filters&rft.jtitle=IET%20image%20processing&rft.au=Zhang,%20Wei%E2%80%90Chuan&rft.date=2014-11&rft.volume=8&rft.issue=11&rft.spage=639&rft.epage=646&rft.pages=639-646&rft.issn=1751-9659&rft.eissn=1751-9667&rft_id=info:doi/10.1049/iet-ipr.2013.0641&rft_dat=%3Cproquest_24P%3E1793250816%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793250816&rft_id=info:pmid/&rfr_iscdi=true