Loading…
Corner detection using Gabor filters
This study proposes a contour‐based corner detector using the magnitude responses of the imaginary part of the Gabor filters on contours. Unlike the traditional contour‐based methods that detect corners by analysing the shape of the edge contours and searching for local curvature maxima points on pl...
Saved in:
Published in: | IET image processing 2014-11, Vol.8 (11), p.639-646 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43 |
container_end_page | 646 |
container_issue | 11 |
container_start_page | 639 |
container_title | IET image processing |
container_volume | 8 |
creator | Zhang, Wei‐Chuan Wang, Fu‐Ping Zhu, Lei Zhou, Zuo‐Feng |
description | This study proposes a contour‐based corner detector using the magnitude responses of the imaginary part of the Gabor filters on contours. Unlike the traditional contour‐based methods that detect corners by analysing the shape of the edge contours and searching for local curvature maxima points on planar curves, the proposed corner detector combines the pixels of the edge contours and their corresponding grey‐variation information. Firstly, edge contours are extracted from the original image using Canny edge detector. Secondly, the imaginary parts of the Gabor filters are used to smooth the pixels on the edge contours. At each edge pixel, the magnitude responses at each direction are normalised by their values and the sum of the normalised magnitude response at each direction is used to extract corners from edge contours. Thirdly, both the magnitude response threshold and the angle threshold are used to remove the weak or false corners. Finally, the proposed detector is compared with five state‐of‐the‐art detectors on some grey‐level images. The results from the experiment reveal that the proposed detector is more competitive with respect to detection accuracy, localisation accuracy, affine transforms and noise‐robustness. |
doi_str_mv | 10.1049/iet-ipr.2013.0641 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793250816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793250816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqXwA9gyMLCkvBd_xWwQ0VKpEgjBbLmOg4zSpNipUP99XQWxMr37pHvucAi5RpghMHXn3ZD7bZgVgHQGguEJmaDkmCsh5Olf5uqcXMT4BcAVlHxCbqo-dC5ktRucHXzfZbvou89sYdZ9yBrfDi7ES3LWmDa6q987JR_zp_fqOV-9LJbVwyq3VBY0Z7UEBlIarEvFsVElChRlermtLRNKrrkyBoQsSmo4xdLWTNSmQS4cGkan5Hbc3Yb-e-fioDc-Wte2pnP9LmqUihYc0myq4li1oY8xuEZvg9-YsNcI-mhEJyM6GdFHI_poJDH3I_PjW7f_H9DL17ficQ4FR0oPnexlqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793250816</pqid></control><display><type>article</type><title>Corner detection using Gabor filters</title><source>Wiley Online Library Open Access</source><creator>Zhang, Wei‐Chuan ; Wang, Fu‐Ping ; Zhu, Lei ; Zhou, Zuo‐Feng</creator><creatorcontrib>Zhang, Wei‐Chuan ; Wang, Fu‐Ping ; Zhu, Lei ; Zhou, Zuo‐Feng</creatorcontrib><description>This study proposes a contour‐based corner detector using the magnitude responses of the imaginary part of the Gabor filters on contours. Unlike the traditional contour‐based methods that detect corners by analysing the shape of the edge contours and searching for local curvature maxima points on planar curves, the proposed corner detector combines the pixels of the edge contours and their corresponding grey‐variation information. Firstly, edge contours are extracted from the original image using Canny edge detector. Secondly, the imaginary parts of the Gabor filters are used to smooth the pixels on the edge contours. At each edge pixel, the magnitude responses at each direction are normalised by their values and the sum of the normalised magnitude response at each direction is used to extract corners from edge contours. Thirdly, both the magnitude response threshold and the angle threshold are used to remove the weak or false corners. Finally, the proposed detector is compared with five state‐of‐the‐art detectors on some grey‐level images. The results from the experiment reveal that the proposed detector is more competitive with respect to detection accuracy, localisation accuracy, affine transforms and noise‐robustness.</description><identifier>ISSN: 1751-9659</identifier><identifier>ISSN: 1751-9667</identifier><identifier>EISSN: 1751-9667</identifier><identifier>DOI: 10.1049/iet-ipr.2013.0641</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>affine transforms ; afflne transform ; angle threshold ; Canny edge detector ; Contours ; contour‐based corner detection ; Corners ; corresponding grey‐variation information ; detection accuracy ; Detectors ; edge contour shape analysis ; edge detection ; Gabor filter ; Gabor filters ; grey systems ; local curvature maxima points ; localisation accuracy ; magnitude response ; magnitude response threshold ; noise‐robustness ; normalised magnitude response ; Pixels ; planar curve ; Shape ; Thresholds</subject><ispartof>IET image processing, 2014-11, Vol.8 (11), p.639-646</ispartof><rights>2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43</citedby><cites>FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-ipr.2013.0641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-ipr.2013.0641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2013.0641$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Zhang, Wei‐Chuan</creatorcontrib><creatorcontrib>Wang, Fu‐Ping</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><creatorcontrib>Zhou, Zuo‐Feng</creatorcontrib><title>Corner detection using Gabor filters</title><title>IET image processing</title><description>This study proposes a contour‐based corner detector using the magnitude responses of the imaginary part of the Gabor filters on contours. Unlike the traditional contour‐based methods that detect corners by analysing the shape of the edge contours and searching for local curvature maxima points on planar curves, the proposed corner detector combines the pixels of the edge contours and their corresponding grey‐variation information. Firstly, edge contours are extracted from the original image using Canny edge detector. Secondly, the imaginary parts of the Gabor filters are used to smooth the pixels on the edge contours. At each edge pixel, the magnitude responses at each direction are normalised by their values and the sum of the normalised magnitude response at each direction is used to extract corners from edge contours. Thirdly, both the magnitude response threshold and the angle threshold are used to remove the weak or false corners. Finally, the proposed detector is compared with five state‐of‐the‐art detectors on some grey‐level images. The results from the experiment reveal that the proposed detector is more competitive with respect to detection accuracy, localisation accuracy, affine transforms and noise‐robustness.</description><subject>affine transforms</subject><subject>afflne transform</subject><subject>angle threshold</subject><subject>Canny edge detector</subject><subject>Contours</subject><subject>contour‐based corner detection</subject><subject>Corners</subject><subject>corresponding grey‐variation information</subject><subject>detection accuracy</subject><subject>Detectors</subject><subject>edge contour shape analysis</subject><subject>edge detection</subject><subject>Gabor filter</subject><subject>Gabor filters</subject><subject>grey systems</subject><subject>local curvature maxima points</subject><subject>localisation accuracy</subject><subject>magnitude response</subject><subject>magnitude response threshold</subject><subject>noise‐robustness</subject><subject>normalised magnitude response</subject><subject>Pixels</subject><subject>planar curve</subject><subject>Shape</subject><subject>Thresholds</subject><issn>1751-9659</issn><issn>1751-9667</issn><issn>1751-9667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqXwA9gyMLCkvBd_xWwQ0VKpEgjBbLmOg4zSpNipUP99XQWxMr37pHvucAi5RpghMHXn3ZD7bZgVgHQGguEJmaDkmCsh5Olf5uqcXMT4BcAVlHxCbqo-dC5ktRucHXzfZbvou89sYdZ9yBrfDi7ES3LWmDa6q987JR_zp_fqOV-9LJbVwyq3VBY0Z7UEBlIarEvFsVElChRlermtLRNKrrkyBoQsSmo4xdLWTNSmQS4cGkan5Hbc3Yb-e-fioDc-Wte2pnP9LmqUihYc0myq4li1oY8xuEZvg9-YsNcI-mhEJyM6GdFHI_poJDH3I_PjW7f_H9DL17ficQ4FR0oPnexlqg</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Zhang, Wei‐Chuan</creator><creator>Wang, Fu‐Ping</creator><creator>Zhu, Lei</creator><creator>Zhou, Zuo‐Feng</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201411</creationdate><title>Corner detection using Gabor filters</title><author>Zhang, Wei‐Chuan ; Wang, Fu‐Ping ; Zhu, Lei ; Zhou, Zuo‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>affine transforms</topic><topic>afflne transform</topic><topic>angle threshold</topic><topic>Canny edge detector</topic><topic>Contours</topic><topic>contour‐based corner detection</topic><topic>Corners</topic><topic>corresponding grey‐variation information</topic><topic>detection accuracy</topic><topic>Detectors</topic><topic>edge contour shape analysis</topic><topic>edge detection</topic><topic>Gabor filter</topic><topic>Gabor filters</topic><topic>grey systems</topic><topic>local curvature maxima points</topic><topic>localisation accuracy</topic><topic>magnitude response</topic><topic>magnitude response threshold</topic><topic>noise‐robustness</topic><topic>normalised magnitude response</topic><topic>Pixels</topic><topic>planar curve</topic><topic>Shape</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei‐Chuan</creatorcontrib><creatorcontrib>Wang, Fu‐Ping</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><creatorcontrib>Zhou, Zuo‐Feng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wei‐Chuan</au><au>Wang, Fu‐Ping</au><au>Zhu, Lei</au><au>Zhou, Zuo‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corner detection using Gabor filters</atitle><jtitle>IET image processing</jtitle><date>2014-11</date><risdate>2014</risdate><volume>8</volume><issue>11</issue><spage>639</spage><epage>646</epage><pages>639-646</pages><issn>1751-9659</issn><issn>1751-9667</issn><eissn>1751-9667</eissn><abstract>This study proposes a contour‐based corner detector using the magnitude responses of the imaginary part of the Gabor filters on contours. Unlike the traditional contour‐based methods that detect corners by analysing the shape of the edge contours and searching for local curvature maxima points on planar curves, the proposed corner detector combines the pixels of the edge contours and their corresponding grey‐variation information. Firstly, edge contours are extracted from the original image using Canny edge detector. Secondly, the imaginary parts of the Gabor filters are used to smooth the pixels on the edge contours. At each edge pixel, the magnitude responses at each direction are normalised by their values and the sum of the normalised magnitude response at each direction is used to extract corners from edge contours. Thirdly, both the magnitude response threshold and the angle threshold are used to remove the weak or false corners. Finally, the proposed detector is compared with five state‐of‐the‐art detectors on some grey‐level images. The results from the experiment reveal that the proposed detector is more competitive with respect to detection accuracy, localisation accuracy, affine transforms and noise‐robustness.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-ipr.2013.0641</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-9659 |
ispartof | IET image processing, 2014-11, Vol.8 (11), p.639-646 |
issn | 1751-9659 1751-9667 1751-9667 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793250816 |
source | Wiley Online Library Open Access |
subjects | affine transforms afflne transform angle threshold Canny edge detector Contours contour‐based corner detection Corners corresponding grey‐variation information detection accuracy Detectors edge contour shape analysis edge detection Gabor filter Gabor filters grey systems local curvature maxima points localisation accuracy magnitude response magnitude response threshold noise‐robustness normalised magnitude response Pixels planar curve Shape Thresholds |
title | Corner detection using Gabor filters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corner%20detection%20using%20Gabor%20filters&rft.jtitle=IET%20image%20processing&rft.au=Zhang,%20Wei%E2%80%90Chuan&rft.date=2014-11&rft.volume=8&rft.issue=11&rft.spage=639&rft.epage=646&rft.pages=639-646&rft.issn=1751-9659&rft.eissn=1751-9667&rft_id=info:doi/10.1049/iet-ipr.2013.0641&rft_dat=%3Cproquest_24P%3E1793250816%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3723-4d704077a1d8951f9816168a1d5cdc4697b59aa067283a5318cd46daf156e1a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793250816&rft_id=info:pmid/&rfr_iscdi=true |