Loading…

Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism

We have developed a proof-of-concept quantum dot–ligand (QD–L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle a...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2016-02, Vol.88 (3), p.1768-1774
Main Authors: Liu, Yuqian, Ye, Mingfu, Ge, Qinyu, Qu, Xiaojun, Guo, Qingsheng, Hu, Xianyun, Sun, Qingjiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3
cites cdi_FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3
container_end_page 1774
container_issue 3
container_start_page 1768
container_title Analytical chemistry (Washington)
container_volume 88
creator Liu, Yuqian
Ye, Mingfu
Ge, Qinyu
Qu, Xiaojun
Guo, Qingsheng
Hu, Xianyun
Sun, Qingjiang
description We have developed a proof-of-concept quantum dot–ligand (QD–L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle and electrostatically assembling green-emission QDs (gQDs) onto the silica surface, as the signal displaying unit, and a hydrophobic compound, dipyrido­[3,2-a:2′,3′-c]­phenazine (dppz), attached onto the gQDs surface via phase transfer, as the ligand as well as fluorescence quencher of gQDs. This system is successfully used for quantification of double-stranded DNA (dsDNA). Because of its avid binding with dppz, dsDNA can break up the QD–L system, displacing the dppz ligand from the gQDs surface and restoring the gQDs emission. Since the red emission of embedded rQDs stays constant, variations of the dual-emission intensity ratios display continuous color changes from orange to bright green, which can be clearly observed by the naked eye. More importantly, this system is advantageous in terms of specificity over a QD ionic conjugate, because the electrical neutrality of dppz excludes its nonspecific electrostatic association with dsDNA. The QD–L system also is capable of detecting single-nucleotide polymorphism, exhibiting sequence-specific ratiometric fluorescence as a QD-bioconjugate does, but possessing the obvious advantage in terms of low cost, with the avoidance of modification, labeling, and purification processes. Therefore, the QD–L system provides an extremely simple but general strategy for detecting nucleic acids in a facile, sensitive, and specific manner.
doi_str_mv 10.1021/acs.analchem.5b04043
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793260829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773834290</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3</originalsourceid><addsrcrecordid>eNqNkstu1DAUhi1ERYeBN0DIEhs2mR5fcltWHW7StBRa2EYnyXEnVRJPbWcxO16AFW_Ik-B2plRigbrxkazv_87i_Iy9ErAQIMURNn6BI_bNmoZFWoMGrZ6wmUglJFlRyKdsBgAqkTnAIXvu_TWAECCyZ-xQZnkqIzljP79i6OxAwXUN_zLhGKaBL234_ePXqrvCseUXWx9o4KfYEq-3_HyNnvilw9EbctxYx793fsKeLylQE2UjtyYqprqn5CJEsKWWL8-O-Z2tG6_i_9nU9GRDF53ntt8O1m3WnR9esAODvaeX-zln396_uzz5mKw-f_h0crxKUOdlSGojSoFtW6IwCnJCoFrkShapNCbLBZFpywJrLZTWmZQ1oNFFjapByMvMqDl7u_NunL2ZyIdq6HxDfY8j2clXIi-VzKCQ5SPQXBVKyxIegWZS6VTGd87e_INe28nFa95RqVBlCiJSekc1znrvyFQb1w3otpWA6rYEVSxBdV-Cal-CGHu9l0_1QO3f0P3VIwA74Db-sPh_zj8avMHr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765139501</pqid></control><display><type>article</type><title>Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Liu, Yuqian ; Ye, Mingfu ; Ge, Qinyu ; Qu, Xiaojun ; Guo, Qingsheng ; Hu, Xianyun ; Sun, Qingjiang</creator><creatorcontrib>Liu, Yuqian ; Ye, Mingfu ; Ge, Qinyu ; Qu, Xiaojun ; Guo, Qingsheng ; Hu, Xianyun ; Sun, Qingjiang</creatorcontrib><description>We have developed a proof-of-concept quantum dot–ligand (QD–L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle and electrostatically assembling green-emission QDs (gQDs) onto the silica surface, as the signal displaying unit, and a hydrophobic compound, dipyrido­[3,2-a:2′,3′-c]­phenazine (dppz), attached onto the gQDs surface via phase transfer, as the ligand as well as fluorescence quencher of gQDs. This system is successfully used for quantification of double-stranded DNA (dsDNA). Because of its avid binding with dppz, dsDNA can break up the QD–L system, displacing the dppz ligand from the gQDs surface and restoring the gQDs emission. Since the red emission of embedded rQDs stays constant, variations of the dual-emission intensity ratios display continuous color changes from orange to bright green, which can be clearly observed by the naked eye. More importantly, this system is advantageous in terms of specificity over a QD ionic conjugate, because the electrical neutrality of dppz excludes its nonspecific electrostatic association with dsDNA. The QD–L system also is capable of detecting single-nucleotide polymorphism, exhibiting sequence-specific ratiometric fluorescence as a QD-bioconjugate does, but possessing the obvious advantage in terms of low cost, with the avoidance of modification, labeling, and purification processes. Therefore, the QD–L system provides an extremely simple but general strategy for detecting nucleic acids in a facile, sensitive, and specific manner.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b04043</identifier><identifier>PMID: 26752152</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cattle ; Deoxyribonucleic acid ; DNA ; DNA - analysis ; DNA - chemistry ; DNA - genetics ; Emission ; Fluorescence ; Ligands ; Nanoparticles ; Nanostructure ; Nucleic acids ; Phenazines - chemistry ; Polymorphism ; Polymorphism, Single Nucleotide ; Quantum Dots ; Qunatum dots ; Silicon dioxide ; Visual</subject><ispartof>Analytical chemistry (Washington), 2016-02, Vol.88 (3), p.1768-1774</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 2, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3</citedby><cites>FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26752152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuqian</creatorcontrib><creatorcontrib>Ye, Mingfu</creatorcontrib><creatorcontrib>Ge, Qinyu</creatorcontrib><creatorcontrib>Qu, Xiaojun</creatorcontrib><creatorcontrib>Guo, Qingsheng</creatorcontrib><creatorcontrib>Hu, Xianyun</creatorcontrib><creatorcontrib>Sun, Qingjiang</creatorcontrib><title>Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We have developed a proof-of-concept quantum dot–ligand (QD–L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle and electrostatically assembling green-emission QDs (gQDs) onto the silica surface, as the signal displaying unit, and a hydrophobic compound, dipyrido­[3,2-a:2′,3′-c]­phenazine (dppz), attached onto the gQDs surface via phase transfer, as the ligand as well as fluorescence quencher of gQDs. This system is successfully used for quantification of double-stranded DNA (dsDNA). Because of its avid binding with dppz, dsDNA can break up the QD–L system, displacing the dppz ligand from the gQDs surface and restoring the gQDs emission. Since the red emission of embedded rQDs stays constant, variations of the dual-emission intensity ratios display continuous color changes from orange to bright green, which can be clearly observed by the naked eye. More importantly, this system is advantageous in terms of specificity over a QD ionic conjugate, because the electrical neutrality of dppz excludes its nonspecific electrostatic association with dsDNA. The QD–L system also is capable of detecting single-nucleotide polymorphism, exhibiting sequence-specific ratiometric fluorescence as a QD-bioconjugate does, but possessing the obvious advantage in terms of low cost, with the avoidance of modification, labeling, and purification processes. Therefore, the QD–L system provides an extremely simple but general strategy for detecting nucleic acids in a facile, sensitive, and specific manner.</description><subject>Animals</subject><subject>Cattle</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - analysis</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>Emission</subject><subject>Fluorescence</subject><subject>Ligands</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nucleic acids</subject><subject>Phenazines - chemistry</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantum Dots</subject><subject>Qunatum dots</subject><subject>Silicon dioxide</subject><subject>Visual</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkstu1DAUhi1ERYeBN0DIEhs2mR5fcltWHW7StBRa2EYnyXEnVRJPbWcxO16AFW_Ik-B2plRigbrxkazv_87i_Iy9ErAQIMURNn6BI_bNmoZFWoMGrZ6wmUglJFlRyKdsBgAqkTnAIXvu_TWAECCyZ-xQZnkqIzljP79i6OxAwXUN_zLhGKaBL234_ePXqrvCseUXWx9o4KfYEq-3_HyNnvilw9EbctxYx793fsKeLylQE2UjtyYqprqn5CJEsKWWL8-O-Z2tG6_i_9nU9GRDF53ntt8O1m3WnR9esAODvaeX-zln396_uzz5mKw-f_h0crxKUOdlSGojSoFtW6IwCnJCoFrkShapNCbLBZFpywJrLZTWmZQ1oNFFjapByMvMqDl7u_NunL2ZyIdq6HxDfY8j2clXIi-VzKCQ5SPQXBVKyxIegWZS6VTGd87e_INe28nFa95RqVBlCiJSekc1znrvyFQb1w3otpWA6rYEVSxBdV-Cal-CGHu9l0_1QO3f0P3VIwA74Db-sPh_zj8avMHr</recordid><startdate>20160202</startdate><enddate>20160202</enddate><creator>Liu, Yuqian</creator><creator>Ye, Mingfu</creator><creator>Ge, Qinyu</creator><creator>Qu, Xiaojun</creator><creator>Guo, Qingsheng</creator><creator>Hu, Xianyun</creator><creator>Sun, Qingjiang</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20160202</creationdate><title>Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism</title><author>Liu, Yuqian ; Ye, Mingfu ; Ge, Qinyu ; Qu, Xiaojun ; Guo, Qingsheng ; Hu, Xianyun ; Sun, Qingjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - analysis</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>Emission</topic><topic>Fluorescence</topic><topic>Ligands</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nucleic acids</topic><topic>Phenazines - chemistry</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantum Dots</topic><topic>Qunatum dots</topic><topic>Silicon dioxide</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuqian</creatorcontrib><creatorcontrib>Ye, Mingfu</creatorcontrib><creatorcontrib>Ge, Qinyu</creatorcontrib><creatorcontrib>Qu, Xiaojun</creatorcontrib><creatorcontrib>Guo, Qingsheng</creatorcontrib><creatorcontrib>Hu, Xianyun</creatorcontrib><creatorcontrib>Sun, Qingjiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuqian</au><au>Ye, Mingfu</au><au>Ge, Qinyu</au><au>Qu, Xiaojun</au><au>Guo, Qingsheng</au><au>Hu, Xianyun</au><au>Sun, Qingjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-02-02</date><risdate>2016</risdate><volume>88</volume><issue>3</issue><spage>1768</spage><epage>1774</epage><pages>1768-1774</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We have developed a proof-of-concept quantum dot–ligand (QD–L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle and electrostatically assembling green-emission QDs (gQDs) onto the silica surface, as the signal displaying unit, and a hydrophobic compound, dipyrido­[3,2-a:2′,3′-c]­phenazine (dppz), attached onto the gQDs surface via phase transfer, as the ligand as well as fluorescence quencher of gQDs. This system is successfully used for quantification of double-stranded DNA (dsDNA). Because of its avid binding with dppz, dsDNA can break up the QD–L system, displacing the dppz ligand from the gQDs surface and restoring the gQDs emission. Since the red emission of embedded rQDs stays constant, variations of the dual-emission intensity ratios display continuous color changes from orange to bright green, which can be clearly observed by the naked eye. More importantly, this system is advantageous in terms of specificity over a QD ionic conjugate, because the electrical neutrality of dppz excludes its nonspecific electrostatic association with dsDNA. The QD–L system also is capable of detecting single-nucleotide polymorphism, exhibiting sequence-specific ratiometric fluorescence as a QD-bioconjugate does, but possessing the obvious advantage in terms of low cost, with the avoidance of modification, labeling, and purification processes. Therefore, the QD–L system provides an extremely simple but general strategy for detecting nucleic acids in a facile, sensitive, and specific manner.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26752152</pmid><doi>10.1021/acs.analchem.5b04043</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2016-02, Vol.88 (3), p.1768-1774
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1793260829
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Cattle
Deoxyribonucleic acid
DNA
DNA - analysis
DNA - chemistry
DNA - genetics
Emission
Fluorescence
Ligands
Nanoparticles
Nanostructure
Nucleic acids
Phenazines - chemistry
Polymorphism
Polymorphism, Single Nucleotide
Quantum Dots
Qunatum dots
Silicon dioxide
Visual
title Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ratiometric%20Quantum%20Dot%E2%80%93Ligand%20System%20Made%20by%20Phase%20Transfer%20for%20Visual%20Detection%20of%20Double-Stranded%20DNA%20and%20Single-Nucleotide%20Polymorphism&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Liu,%20Yuqian&rft.date=2016-02-02&rft.volume=88&rft.issue=3&rft.spage=1768&rft.epage=1774&rft.pages=1768-1774&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b04043&rft_dat=%3Cproquest_cross%3E1773834290%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1765139501&rft_id=info:pmid/26752152&rfr_iscdi=true