Loading…
Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism
We have developed a proof-of-concept quantum dot–ligand (QD–L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle a...
Saved in:
Published in: | Analytical chemistry (Washington) 2016-02, Vol.88 (3), p.1768-1774 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3 |
container_end_page | 1774 |
container_issue | 3 |
container_start_page | 1768 |
container_title | Analytical chemistry (Washington) |
container_volume | 88 |
creator | Liu, Yuqian Ye, Mingfu Ge, Qinyu Qu, Xiaojun Guo, Qingsheng Hu, Xianyun Sun, Qingjiang |
description | We have developed a proof-of-concept quantum dot–ligand (QD–L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle and electrostatically assembling green-emission QDs (gQDs) onto the silica surface, as the signal displaying unit, and a hydrophobic compound, dipyrido[3,2-a:2′,3′-c]phenazine (dppz), attached onto the gQDs surface via phase transfer, as the ligand as well as fluorescence quencher of gQDs. This system is successfully used for quantification of double-stranded DNA (dsDNA). Because of its avid binding with dppz, dsDNA can break up the QD–L system, displacing the dppz ligand from the gQDs surface and restoring the gQDs emission. Since the red emission of embedded rQDs stays constant, variations of the dual-emission intensity ratios display continuous color changes from orange to bright green, which can be clearly observed by the naked eye. More importantly, this system is advantageous in terms of specificity over a QD ionic conjugate, because the electrical neutrality of dppz excludes its nonspecific electrostatic association with dsDNA. The QD–L system also is capable of detecting single-nucleotide polymorphism, exhibiting sequence-specific ratiometric fluorescence as a QD-bioconjugate does, but possessing the obvious advantage in terms of low cost, with the avoidance of modification, labeling, and purification processes. Therefore, the QD–L system provides an extremely simple but general strategy for detecting nucleic acids in a facile, sensitive, and specific manner. |
doi_str_mv | 10.1021/acs.analchem.5b04043 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793260829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1773834290</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3</originalsourceid><addsrcrecordid>eNqNkstu1DAUhi1ERYeBN0DIEhs2mR5fcltWHW7StBRa2EYnyXEnVRJPbWcxO16AFW_Ik-B2plRigbrxkazv_87i_Iy9ErAQIMURNn6BI_bNmoZFWoMGrZ6wmUglJFlRyKdsBgAqkTnAIXvu_TWAECCyZ-xQZnkqIzljP79i6OxAwXUN_zLhGKaBL234_ePXqrvCseUXWx9o4KfYEq-3_HyNnvilw9EbctxYx793fsKeLylQE2UjtyYqprqn5CJEsKWWL8-O-Z2tG6_i_9nU9GRDF53ntt8O1m3WnR9esAODvaeX-zln396_uzz5mKw-f_h0crxKUOdlSGojSoFtW6IwCnJCoFrkShapNCbLBZFpywJrLZTWmZQ1oNFFjapByMvMqDl7u_NunL2ZyIdq6HxDfY8j2clXIi-VzKCQ5SPQXBVKyxIegWZS6VTGd87e_INe28nFa95RqVBlCiJSekc1znrvyFQb1w3otpWA6rYEVSxBdV-Cal-CGHu9l0_1QO3f0P3VIwA74Db-sPh_zj8avMHr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765139501</pqid></control><display><type>article</type><title>Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Liu, Yuqian ; Ye, Mingfu ; Ge, Qinyu ; Qu, Xiaojun ; Guo, Qingsheng ; Hu, Xianyun ; Sun, Qingjiang</creator><creatorcontrib>Liu, Yuqian ; Ye, Mingfu ; Ge, Qinyu ; Qu, Xiaojun ; Guo, Qingsheng ; Hu, Xianyun ; Sun, Qingjiang</creatorcontrib><description>We have developed a proof-of-concept quantum dot–ligand (QD–L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle and electrostatically assembling green-emission QDs (gQDs) onto the silica surface, as the signal displaying unit, and a hydrophobic compound, dipyrido[3,2-a:2′,3′-c]phenazine (dppz), attached onto the gQDs surface via phase transfer, as the ligand as well as fluorescence quencher of gQDs. This system is successfully used for quantification of double-stranded DNA (dsDNA). Because of its avid binding with dppz, dsDNA can break up the QD–L system, displacing the dppz ligand from the gQDs surface and restoring the gQDs emission. Since the red emission of embedded rQDs stays constant, variations of the dual-emission intensity ratios display continuous color changes from orange to bright green, which can be clearly observed by the naked eye. More importantly, this system is advantageous in terms of specificity over a QD ionic conjugate, because the electrical neutrality of dppz excludes its nonspecific electrostatic association with dsDNA. The QD–L system also is capable of detecting single-nucleotide polymorphism, exhibiting sequence-specific ratiometric fluorescence as a QD-bioconjugate does, but possessing the obvious advantage in terms of low cost, with the avoidance of modification, labeling, and purification processes. Therefore, the QD–L system provides an extremely simple but general strategy for detecting nucleic acids in a facile, sensitive, and specific manner.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b04043</identifier><identifier>PMID: 26752152</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cattle ; Deoxyribonucleic acid ; DNA ; DNA - analysis ; DNA - chemistry ; DNA - genetics ; Emission ; Fluorescence ; Ligands ; Nanoparticles ; Nanostructure ; Nucleic acids ; Phenazines - chemistry ; Polymorphism ; Polymorphism, Single Nucleotide ; Quantum Dots ; Qunatum dots ; Silicon dioxide ; Visual</subject><ispartof>Analytical chemistry (Washington), 2016-02, Vol.88 (3), p.1768-1774</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 2, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3</citedby><cites>FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26752152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuqian</creatorcontrib><creatorcontrib>Ye, Mingfu</creatorcontrib><creatorcontrib>Ge, Qinyu</creatorcontrib><creatorcontrib>Qu, Xiaojun</creatorcontrib><creatorcontrib>Guo, Qingsheng</creatorcontrib><creatorcontrib>Hu, Xianyun</creatorcontrib><creatorcontrib>Sun, Qingjiang</creatorcontrib><title>Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We have developed a proof-of-concept quantum dot–ligand (QD–L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle and electrostatically assembling green-emission QDs (gQDs) onto the silica surface, as the signal displaying unit, and a hydrophobic compound, dipyrido[3,2-a:2′,3′-c]phenazine (dppz), attached onto the gQDs surface via phase transfer, as the ligand as well as fluorescence quencher of gQDs. This system is successfully used for quantification of double-stranded DNA (dsDNA). Because of its avid binding with dppz, dsDNA can break up the QD–L system, displacing the dppz ligand from the gQDs surface and restoring the gQDs emission. Since the red emission of embedded rQDs stays constant, variations of the dual-emission intensity ratios display continuous color changes from orange to bright green, which can be clearly observed by the naked eye. More importantly, this system is advantageous in terms of specificity over a QD ionic conjugate, because the electrical neutrality of dppz excludes its nonspecific electrostatic association with dsDNA. The QD–L system also is capable of detecting single-nucleotide polymorphism, exhibiting sequence-specific ratiometric fluorescence as a QD-bioconjugate does, but possessing the obvious advantage in terms of low cost, with the avoidance of modification, labeling, and purification processes. Therefore, the QD–L system provides an extremely simple but general strategy for detecting nucleic acids in a facile, sensitive, and specific manner.</description><subject>Animals</subject><subject>Cattle</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - analysis</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>Emission</subject><subject>Fluorescence</subject><subject>Ligands</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nucleic acids</subject><subject>Phenazines - chemistry</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantum Dots</subject><subject>Qunatum dots</subject><subject>Silicon dioxide</subject><subject>Visual</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkstu1DAUhi1ERYeBN0DIEhs2mR5fcltWHW7StBRa2EYnyXEnVRJPbWcxO16AFW_Ik-B2plRigbrxkazv_87i_Iy9ErAQIMURNn6BI_bNmoZFWoMGrZ6wmUglJFlRyKdsBgAqkTnAIXvu_TWAECCyZ-xQZnkqIzljP79i6OxAwXUN_zLhGKaBL234_ePXqrvCseUXWx9o4KfYEq-3_HyNnvilw9EbctxYx793fsKeLylQE2UjtyYqprqn5CJEsKWWL8-O-Z2tG6_i_9nU9GRDF53ntt8O1m3WnR9esAODvaeX-zln396_uzz5mKw-f_h0crxKUOdlSGojSoFtW6IwCnJCoFrkShapNCbLBZFpywJrLZTWmZQ1oNFFjapByMvMqDl7u_NunL2ZyIdq6HxDfY8j2clXIi-VzKCQ5SPQXBVKyxIegWZS6VTGd87e_INe28nFa95RqVBlCiJSekc1znrvyFQb1w3otpWA6rYEVSxBdV-Cal-CGHu9l0_1QO3f0P3VIwA74Db-sPh_zj8avMHr</recordid><startdate>20160202</startdate><enddate>20160202</enddate><creator>Liu, Yuqian</creator><creator>Ye, Mingfu</creator><creator>Ge, Qinyu</creator><creator>Qu, Xiaojun</creator><creator>Guo, Qingsheng</creator><creator>Hu, Xianyun</creator><creator>Sun, Qingjiang</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20160202</creationdate><title>Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism</title><author>Liu, Yuqian ; Ye, Mingfu ; Ge, Qinyu ; Qu, Xiaojun ; Guo, Qingsheng ; Hu, Xianyun ; Sun, Qingjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - analysis</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>Emission</topic><topic>Fluorescence</topic><topic>Ligands</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nucleic acids</topic><topic>Phenazines - chemistry</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantum Dots</topic><topic>Qunatum dots</topic><topic>Silicon dioxide</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuqian</creatorcontrib><creatorcontrib>Ye, Mingfu</creatorcontrib><creatorcontrib>Ge, Qinyu</creatorcontrib><creatorcontrib>Qu, Xiaojun</creatorcontrib><creatorcontrib>Guo, Qingsheng</creatorcontrib><creatorcontrib>Hu, Xianyun</creatorcontrib><creatorcontrib>Sun, Qingjiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuqian</au><au>Ye, Mingfu</au><au>Ge, Qinyu</au><au>Qu, Xiaojun</au><au>Guo, Qingsheng</au><au>Hu, Xianyun</au><au>Sun, Qingjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-02-02</date><risdate>2016</risdate><volume>88</volume><issue>3</issue><spage>1768</spage><epage>1774</epage><pages>1768-1774</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We have developed a proof-of-concept quantum dot–ligand (QD–L) system for visual selective detection of nucleic acids, in combination with a ratiometric fluorescence technique. This system comprises a dual-emission QDs nanohybrid formed by embedding a red-emission QD (rQD) in a silica nanoparticle and electrostatically assembling green-emission QDs (gQDs) onto the silica surface, as the signal displaying unit, and a hydrophobic compound, dipyrido[3,2-a:2′,3′-c]phenazine (dppz), attached onto the gQDs surface via phase transfer, as the ligand as well as fluorescence quencher of gQDs. This system is successfully used for quantification of double-stranded DNA (dsDNA). Because of its avid binding with dppz, dsDNA can break up the QD–L system, displacing the dppz ligand from the gQDs surface and restoring the gQDs emission. Since the red emission of embedded rQDs stays constant, variations of the dual-emission intensity ratios display continuous color changes from orange to bright green, which can be clearly observed by the naked eye. More importantly, this system is advantageous in terms of specificity over a QD ionic conjugate, because the electrical neutrality of dppz excludes its nonspecific electrostatic association with dsDNA. The QD–L system also is capable of detecting single-nucleotide polymorphism, exhibiting sequence-specific ratiometric fluorescence as a QD-bioconjugate does, but possessing the obvious advantage in terms of low cost, with the avoidance of modification, labeling, and purification processes. Therefore, the QD–L system provides an extremely simple but general strategy for detecting nucleic acids in a facile, sensitive, and specific manner.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26752152</pmid><doi>10.1021/acs.analchem.5b04043</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2016-02, Vol.88 (3), p.1768-1774 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793260829 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Cattle Deoxyribonucleic acid DNA DNA - analysis DNA - chemistry DNA - genetics Emission Fluorescence Ligands Nanoparticles Nanostructure Nucleic acids Phenazines - chemistry Polymorphism Polymorphism, Single Nucleotide Quantum Dots Qunatum dots Silicon dioxide Visual |
title | Ratiometric Quantum Dot–Ligand System Made by Phase Transfer for Visual Detection of Double-Stranded DNA and Single-Nucleotide Polymorphism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ratiometric%20Quantum%20Dot%E2%80%93Ligand%20System%20Made%20by%20Phase%20Transfer%20for%20Visual%20Detection%20of%20Double-Stranded%20DNA%20and%20Single-Nucleotide%20Polymorphism&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Liu,%20Yuqian&rft.date=2016-02-02&rft.volume=88&rft.issue=3&rft.spage=1768&rft.epage=1774&rft.pages=1768-1774&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b04043&rft_dat=%3Cproquest_cross%3E1773834290%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a479t-bf191add9a1f307ea0eb1732852ff671eefd98ab41344622b0af48ba3ca0796f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1765139501&rft_id=info:pmid/26752152&rfr_iscdi=true |