Loading…

Investigation of Switch Designs for the Dynamic Load Current Multiplier Scheme on the SPHYNX Microsecond Linear Transformer Driver

SPHINX is a microsecond linear transformer driver LTD, used essentially for implosion of Z-pinch loads in direct drive mode. It can deliver a 6-MA current pulse within 800 ns into a Z-pinch load. The dynamic load current multiplier concept enables the current pulse to be modified by increasing its a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2014-10, Vol.42 (10), p.2974-2980
Main Authors: Maysonnave, Thomas, Bayol, Frédéric, Demol, Gauthier, d'Almeida, Thierry, Lassalle, Francis, Morell, Alain, Grunenwald, Julien, Chuvatin, Alexander S., Pecastaing, Laurent, De Ferron, Antoine Silvestre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SPHINX is a microsecond linear transformer driver LTD, used essentially for implosion of Z-pinch loads in direct drive mode. It can deliver a 6-MA current pulse within 800 ns into a Z-pinch load. The dynamic load current multiplier concept enables the current pulse to be modified by increasing its amplitude while reducing its rise time before being delivered to the load. This compact system is made up of concentric electrodes (autotransformer), a dynamic flux extruder (cylindrical wire array), a vacuum convolute (eight postholes), and a vacuum closing switch, which is the key component of the system. Several different schemes are investigated for designing a vacuum switch suitable for operating the dynamic load current multiplier on the SPHINX generator for various applications, including isentropic compression experiments and Z-pinch radiation effects studies. In particular, the design of a compact vacuum surface switch and a multichannel vacuum switch, located upstream of the load are studied. Electrostatic simulations supporting the switch designs are presented along with test bed experiments. Initial results from shots on the SPHINX driver are also presented.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2014.2313372