Loading…

A spectral clustering based ensemble pruning approach

This paper introduces a novel bagging ensemble classifier pruning approach. Most investigated pruning approaches employ heuristic functions to rank classifiers in the ensemble, and select part of them from the ranked ensemble, so redundancy may exist in the selected classifiers. Based on the idea th...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2014-09, Vol.139, p.289-297
Main Authors: Zhang, Huaxiang, Cao, Linlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-781c9606fea134a8ce78dcad823024c2d67f7a87051b10cb87053419bc0f00983
cites cdi_FETCH-LOGICAL-c369t-781c9606fea134a8ce78dcad823024c2d67f7a87051b10cb87053419bc0f00983
container_end_page 297
container_issue
container_start_page 289
container_title Neurocomputing (Amsterdam)
container_volume 139
creator Zhang, Huaxiang
Cao, Linlin
description This paper introduces a novel bagging ensemble classifier pruning approach. Most investigated pruning approaches employ heuristic functions to rank classifiers in the ensemble, and select part of them from the ranked ensemble, so redundancy may exist in the selected classifiers. Based on the idea that the selected classifiers should be accurate and diverse, we define classifier similarity according to the predictive accuracy and the diversity, and introduce a Spectral Clustering based classifier selection approach (SC). SC groups the classifiers into two clusters based on the classifier similarity, and retains one cluster of classifiers in the ensemble. Experimental results show that SC is competitive in terms of classification accuracy. •We employ spectral clustering to prune classifiers in an ensemble.•A classifier similarity concept is defined and used for classifier pruning.•The similarity takes into account the predictive performance and the diversity.•Experimental results indicate the effectiveness of the proposed approach.
doi_str_mv 10.1016/j.neucom.2014.02.030
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793283064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231214004299</els_id><sourcerecordid>1793283064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-781c9606fea134a8ce78dcad823024c2d67f7a87051b10cb87053419bc0f00983</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9CF5aJ0nbpBdhWfyCBS96Dul0qln6ZdIK_nu7dPHoaYbhmXmZh7FrDgkHnt_tk44m7NtEAE8TEAlIOGErrpWItdD5KVtBIbJYSC7O2UUIewCuuChWLNtEYSAcvW0ibKYwknfdR1TaQFVEXaC2bCga_NQdxnYYfG_x85Kd1bYJdHWsa_b--PC2fY53r08v280uRpkXY6w0xyKHvCbLZWo1ktIV2koLCSJFUeWqVlYryHjJActDJ1NelAg1QKHlmt0ud-fYr4nCaFoXkJrGdtRPwXBVSKEl5OmMpguKvg_BU20G71rrfwwHc7Bk9maxZA6WDAgzW5rXbo4JNqBtam87dOFvV-hUZVrxmbtfOJrf_XbkTUBHHVLl_KzPVL37P-gXnYd-Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793283064</pqid></control><display><type>article</type><title>A spectral clustering based ensemble pruning approach</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Huaxiang ; Cao, Linlin</creator><creatorcontrib>Zhang, Huaxiang ; Cao, Linlin</creatorcontrib><description>This paper introduces a novel bagging ensemble classifier pruning approach. Most investigated pruning approaches employ heuristic functions to rank classifiers in the ensemble, and select part of them from the ranked ensemble, so redundancy may exist in the selected classifiers. Based on the idea that the selected classifiers should be accurate and diverse, we define classifier similarity according to the predictive accuracy and the diversity, and introduce a Spectral Clustering based classifier selection approach (SC). SC groups the classifiers into two clusters based on the classifier similarity, and retains one cluster of classifiers in the ensemble. Experimental results show that SC is competitive in terms of classification accuracy. •We employ spectral clustering to prune classifiers in an ensemble.•A classifier similarity concept is defined and used for classifier pruning.•The similarity takes into account the predictive performance and the diversity.•Experimental results indicate the effectiveness of the proposed approach.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2014.02.030</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Bagging ; Classification ; Classifier similarity ; Classifiers ; Clustering ; Clusters ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Ensemble pruning ; Exact sciences and technology ; Memory organisation. Data processing ; Pruning ; Similarity ; Software ; Spectra ; Spectral clustering</subject><ispartof>Neurocomputing (Amsterdam), 2014-09, Vol.139, p.289-297</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-781c9606fea134a8ce78dcad823024c2d67f7a87051b10cb87053419bc0f00983</citedby><cites>FETCH-LOGICAL-c369t-781c9606fea134a8ce78dcad823024c2d67f7a87051b10cb87053419bc0f00983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28475871$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Huaxiang</creatorcontrib><creatorcontrib>Cao, Linlin</creatorcontrib><title>A spectral clustering based ensemble pruning approach</title><title>Neurocomputing (Amsterdam)</title><description>This paper introduces a novel bagging ensemble classifier pruning approach. Most investigated pruning approaches employ heuristic functions to rank classifiers in the ensemble, and select part of them from the ranked ensemble, so redundancy may exist in the selected classifiers. Based on the idea that the selected classifiers should be accurate and diverse, we define classifier similarity according to the predictive accuracy and the diversity, and introduce a Spectral Clustering based classifier selection approach (SC). SC groups the classifiers into two clusters based on the classifier similarity, and retains one cluster of classifiers in the ensemble. Experimental results show that SC is competitive in terms of classification accuracy. •We employ spectral clustering to prune classifiers in an ensemble.•A classifier similarity concept is defined and used for classifier pruning.•The similarity takes into account the predictive performance and the diversity.•Experimental results indicate the effectiveness of the proposed approach.</description><subject>Applied sciences</subject><subject>Bagging</subject><subject>Classification</subject><subject>Classifier similarity</subject><subject>Classifiers</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Ensemble pruning</subject><subject>Exact sciences and technology</subject><subject>Memory organisation. Data processing</subject><subject>Pruning</subject><subject>Similarity</subject><subject>Software</subject><subject>Spectra</subject><subject>Spectral clustering</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9CF5aJ0nbpBdhWfyCBS96Dul0qln6ZdIK_nu7dPHoaYbhmXmZh7FrDgkHnt_tk44m7NtEAE8TEAlIOGErrpWItdD5KVtBIbJYSC7O2UUIewCuuChWLNtEYSAcvW0ibKYwknfdR1TaQFVEXaC2bCga_NQdxnYYfG_x85Kd1bYJdHWsa_b--PC2fY53r08v280uRpkXY6w0xyKHvCbLZWo1ktIV2koLCSJFUeWqVlYryHjJActDJ1NelAg1QKHlmt0ud-fYr4nCaFoXkJrGdtRPwXBVSKEl5OmMpguKvg_BU20G71rrfwwHc7Bk9maxZA6WDAgzW5rXbo4JNqBtam87dOFvV-hUZVrxmbtfOJrf_XbkTUBHHVLl_KzPVL37P-gXnYd-Bw</recordid><startdate>20140902</startdate><enddate>20140902</enddate><creator>Zhang, Huaxiang</creator><creator>Cao, Linlin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140902</creationdate><title>A spectral clustering based ensemble pruning approach</title><author>Zhang, Huaxiang ; Cao, Linlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-781c9606fea134a8ce78dcad823024c2d67f7a87051b10cb87053419bc0f00983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Bagging</topic><topic>Classification</topic><topic>Classifier similarity</topic><topic>Classifiers</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Ensemble pruning</topic><topic>Exact sciences and technology</topic><topic>Memory organisation. Data processing</topic><topic>Pruning</topic><topic>Similarity</topic><topic>Software</topic><topic>Spectra</topic><topic>Spectral clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huaxiang</creatorcontrib><creatorcontrib>Cao, Linlin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huaxiang</au><au>Cao, Linlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spectral clustering based ensemble pruning approach</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2014-09-02</date><risdate>2014</risdate><volume>139</volume><spage>289</spage><epage>297</epage><pages>289-297</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This paper introduces a novel bagging ensemble classifier pruning approach. Most investigated pruning approaches employ heuristic functions to rank classifiers in the ensemble, and select part of them from the ranked ensemble, so redundancy may exist in the selected classifiers. Based on the idea that the selected classifiers should be accurate and diverse, we define classifier similarity according to the predictive accuracy and the diversity, and introduce a Spectral Clustering based classifier selection approach (SC). SC groups the classifiers into two clusters based on the classifier similarity, and retains one cluster of classifiers in the ensemble. Experimental results show that SC is competitive in terms of classification accuracy. •We employ spectral clustering to prune classifiers in an ensemble.•A classifier similarity concept is defined and used for classifier pruning.•The similarity takes into account the predictive performance and the diversity.•Experimental results indicate the effectiveness of the proposed approach.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2014.02.030</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2014-09, Vol.139, p.289-297
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1793283064
source ScienceDirect Freedom Collection
subjects Applied sciences
Bagging
Classification
Classifier similarity
Classifiers
Clustering
Clusters
Computer science
control theory
systems
Data processing. List processing. Character string processing
Ensemble pruning
Exact sciences and technology
Memory organisation. Data processing
Pruning
Similarity
Software
Spectra
Spectral clustering
title A spectral clustering based ensemble pruning approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spectral%20clustering%20based%20ensemble%20pruning%20approach&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Zhang,%20Huaxiang&rft.date=2014-09-02&rft.volume=139&rft.spage=289&rft.epage=297&rft.pages=289-297&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2014.02.030&rft_dat=%3Cproquest_cross%3E1793283064%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-781c9606fea134a8ce78dcad823024c2d67f7a87051b10cb87053419bc0f00983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793283064&rft_id=info:pmid/&rfr_iscdi=true