Loading…
Digital tomosynthesis (DTS) for quantitative assessment of trabecular microstructure in human vertebral bone
Abstract Digital tomosynthesis (DTS) provides slice images of an object using conventional radiographic methods with high in-plane resolution. The objective of this study was to explore the potential of DTS for describing microstructural, stiffness and stress distribution properties of vertebral can...
Saved in:
Published in: | Medical engineering & physics 2015-01, Vol.37 (1), p.109-120 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Digital tomosynthesis (DTS) provides slice images of an object using conventional radiographic methods with high in-plane resolution. The objective of this study was to explore the potential of DTS for describing microstructural, stiffness and stress distribution properties of vertebral cancellous bone. Forty vertebrae (T6, T8, T11, and L3) from 10 cadavers (63–90 years) were scanned using microCT and DTS. Anisotropy (μCT.DA), and the specimen-average and standard deviation of trabecular bone volume fraction (BV/TV), thickness (Tb.Th), number (Tb.N) and separation (Tb.Sp) were obtained using stereology. Apparent modulus ( EFEM ), and the magnitude (VMExp/ σapp ) and variability (VMCV) of trabecular stresses were calculated using microCT-based finite element modeling. Mean intercept length, line fraction deviation and fractal parameters were obtained from coronal DTS slices, then correlated with stereological and finite element parameters using linear regression models. Twenty-one DTS parameters (out of 27) correlated to BV/TV, Tb.Th, Tb.N, Tb.Sp and/or μCT.DA ( p < 0.0001– p < 0.05). DTS parameters increased the explained variability in EFEM and VMCV (by 9–11% and 13–19%, respectively; p < 0.0001– p < 0.04) over that explained by BV/TV. In conclusion, DTS has potential for quantitative assessment of cancellous bone and may be used as a modality complementary to those measuring bone mass for assessing spinal fracture risk. |
---|---|
ISSN: | 1350-4533 1873-4030 |
DOI: | 10.1016/j.medengphy.2014.11.005 |