Loading…
AMS method for depth profiling of trace elements concentration in materials – Construction and applications
The need to investigate the behavior of solid state materials on the impact/retention/repulsion/contamination/impregnation with special trace elements or radioactive elements has driven us to develop a modified Accelerator Mass Spectrometry (AMS) analyzing method that is able to perform the measurem...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2015-10, Vol.361, p.250-256 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The need to investigate the behavior of solid state materials on the impact/retention/repulsion/contamination/impregnation with special trace elements or radioactive elements has driven us to develop a modified Accelerator Mass Spectrometry (AMS) analyzing method that is able to perform the measurement of the concentration depth profile of an element in a host material. This upgraded method that we call AMS-depth profiling method (AMS-DP) measures continuously the concentration of a trace element in a given sample material as a function of the depth from the surface (e.g., tritium in carbon, deuterium in tungsten, etc.). However, in order to perform depth profiling, common AMS facilities have to undergo several changes: a new replaceable sample target-holder has to be constructed to accept small plates of solid material as samples; their position has to be adjusted in the focus point of the sputter beam; crater rim effects of the produced hole in the sample have to be avoided or removed from the registered events in the detector; suitable reference samples have to be prepared and used for calibration. All procedures are presented in the paper together with several applications. |
---|---|
ISSN: | 0168-583X 1872-9584 |
DOI: | 10.1016/j.nimb.2015.04.050 |