Loading…

A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems

A second order Exponential Time Differencing (ETD) method for reaction–diffusion systems which uses a real distinct poles discretization method for the underlying matrix exponentials is developed. The method is established to be stable and second order convergent. It is demonstrated to be robust for...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2016-06, Vol.299, p.24-34
Main Authors: Asante-Asamani, E.O., Khaliq, A.Q.M., Wade, B.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93
cites cdi_FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93
container_end_page 34
container_issue
container_start_page 24
container_title Journal of computational and applied mathematics
container_volume 299
creator Asante-Asamani, E.O.
Khaliq, A.Q.M.
Wade, B.A.
description A second order Exponential Time Differencing (ETD) method for reaction–diffusion systems which uses a real distinct poles discretization method for the underlying matrix exponentials is developed. The method is established to be stable and second order convergent. It is demonstrated to be robust for problems involving non-smooth initial and boundary conditions and steep solution gradients. We discuss several advantages over competing second order ETD schemes.
doi_str_mv 10.1016/j.cam.2015.09.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793292827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042715004690</els_id><sourcerecordid>1793292827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93</originalsourceid><addsrcrecordid>eNp9kL1OwzAQxy0EEqXwAGwZWRLO-XIspqqUD6kSS5kYLNc5g6skDraL6MY78IY8Ca7KzHSnu__vpPsRckkho0Dr602mZJ_lQKsMeAaUHZEJbRhPKWPNMZlAwVgKZc5OyZn3GwCoOS0n5GWWOJRd0hofzKBCMtoOfbL4HO2AQzBxtTI9JrdGa3Q4KDO8Jl69YZxp6_awCsYOP1_fbYxsfewTv_MBe39OTrTsPF781Sl5vlus5g_p8un-cT5bpqooIKRYcslKVVHFZcF1IysuMdc1VFq3gDFUKV5gFVuNqkSmcA31GiFXVK5bXkzJ1eHu6Oz7Fn0QvfEKu04OaLdeUMaLnOdNzmKUHqLKWe8dajE600u3ExTEXqTYiChS7EUK4CKKjMzNgcH4w4dBJ7wy0QS2xqEKorXmH_oXWQZ-1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793292827</pqid></control><display><type>article</type><title>A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems</title><source>Elsevier</source><creator>Asante-Asamani, E.O. ; Khaliq, A.Q.M. ; Wade, B.A.</creator><creatorcontrib>Asante-Asamani, E.O. ; Khaliq, A.Q.M. ; Wade, B.A.</creatorcontrib><description>A second order Exponential Time Differencing (ETD) method for reaction–diffusion systems which uses a real distinct poles discretization method for the underlying matrix exponentials is developed. The method is established to be stable and second order convergent. It is demonstrated to be robust for problems involving non-smooth initial and boundary conditions and steep solution gradients. We discuss several advantages over competing second order ETD schemes.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2015.09.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Boundary conditions ; Computation ; Discretization ; Exponential Time Differencing ; Mathematical analysis ; Mathematical models ; Poles ; Reaction–diffusion equations ; Semilinear parabolic problems</subject><ispartof>Journal of computational and applied mathematics, 2016-06, Vol.299, p.24-34</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93</citedby><cites>FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Asante-Asamani, E.O.</creatorcontrib><creatorcontrib>Khaliq, A.Q.M.</creatorcontrib><creatorcontrib>Wade, B.A.</creatorcontrib><title>A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems</title><title>Journal of computational and applied mathematics</title><description>A second order Exponential Time Differencing (ETD) method for reaction–diffusion systems which uses a real distinct poles discretization method for the underlying matrix exponentials is developed. The method is established to be stable and second order convergent. It is demonstrated to be robust for problems involving non-smooth initial and boundary conditions and steep solution gradients. We discuss several advantages over competing second order ETD schemes.</description><subject>Boundary conditions</subject><subject>Computation</subject><subject>Discretization</subject><subject>Exponential Time Differencing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Poles</subject><subject>Reaction–diffusion equations</subject><subject>Semilinear parabolic problems</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQxy0EEqXwAGwZWRLO-XIspqqUD6kSS5kYLNc5g6skDraL6MY78IY8Ca7KzHSnu__vpPsRckkho0Dr602mZJ_lQKsMeAaUHZEJbRhPKWPNMZlAwVgKZc5OyZn3GwCoOS0n5GWWOJRd0hofzKBCMtoOfbL4HO2AQzBxtTI9JrdGa3Q4KDO8Jl69YZxp6_awCsYOP1_fbYxsfewTv_MBe39OTrTsPF781Sl5vlus5g_p8un-cT5bpqooIKRYcslKVVHFZcF1IysuMdc1VFq3gDFUKV5gFVuNqkSmcA31GiFXVK5bXkzJ1eHu6Oz7Fn0QvfEKu04OaLdeUMaLnOdNzmKUHqLKWe8dajE600u3ExTEXqTYiChS7EUK4CKKjMzNgcH4w4dBJ7wy0QS2xqEKorXmH_oXWQZ-1w</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Asante-Asamani, E.O.</creator><creator>Khaliq, A.Q.M.</creator><creator>Wade, B.A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201606</creationdate><title>A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems</title><author>Asante-Asamani, E.O. ; Khaliq, A.Q.M. ; Wade, B.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary conditions</topic><topic>Computation</topic><topic>Discretization</topic><topic>Exponential Time Differencing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Poles</topic><topic>Reaction–diffusion equations</topic><topic>Semilinear parabolic problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asante-Asamani, E.O.</creatorcontrib><creatorcontrib>Khaliq, A.Q.M.</creatorcontrib><creatorcontrib>Wade, B.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asante-Asamani, E.O.</au><au>Khaliq, A.Q.M.</au><au>Wade, B.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-06</date><risdate>2016</risdate><volume>299</volume><spage>24</spage><epage>34</epage><pages>24-34</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>A second order Exponential Time Differencing (ETD) method for reaction–diffusion systems which uses a real distinct poles discretization method for the underlying matrix exponentials is developed. The method is established to be stable and second order convergent. It is demonstrated to be robust for problems involving non-smooth initial and boundary conditions and steep solution gradients. We discuss several advantages over competing second order ETD schemes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2015.09.017</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2016-06, Vol.299, p.24-34
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1793292827
source Elsevier
subjects Boundary conditions
Computation
Discretization
Exponential Time Differencing
Mathematical analysis
Mathematical models
Poles
Reaction–diffusion equations
Semilinear parabolic problems
title A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20real%20distinct%20poles%20Exponential%20Time%20Differencing%20scheme%20for%20reaction%E2%80%93diffusion%20systems&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Asante-Asamani,%20E.O.&rft.date=2016-06&rft.volume=299&rft.spage=24&rft.epage=34&rft.pages=24-34&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2015.09.017&rft_dat=%3Cproquest_cross%3E1793292827%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793292827&rft_id=info:pmid/&rfr_iscdi=true