Loading…
A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems
A second order Exponential Time Differencing (ETD) method for reaction–diffusion systems which uses a real distinct poles discretization method for the underlying matrix exponentials is developed. The method is established to be stable and second order convergent. It is demonstrated to be robust for...
Saved in:
Published in: | Journal of computational and applied mathematics 2016-06, Vol.299, p.24-34 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93 |
container_end_page | 34 |
container_issue | |
container_start_page | 24 |
container_title | Journal of computational and applied mathematics |
container_volume | 299 |
creator | Asante-Asamani, E.O. Khaliq, A.Q.M. Wade, B.A. |
description | A second order Exponential Time Differencing (ETD) method for reaction–diffusion systems which uses a real distinct poles discretization method for the underlying matrix exponentials is developed. The method is established to be stable and second order convergent. It is demonstrated to be robust for problems involving non-smooth initial and boundary conditions and steep solution gradients. We discuss several advantages over competing second order ETD schemes. |
doi_str_mv | 10.1016/j.cam.2015.09.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793292827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042715004690</els_id><sourcerecordid>1793292827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93</originalsourceid><addsrcrecordid>eNp9kL1OwzAQxy0EEqXwAGwZWRLO-XIspqqUD6kSS5kYLNc5g6skDraL6MY78IY8Ca7KzHSnu__vpPsRckkho0Dr602mZJ_lQKsMeAaUHZEJbRhPKWPNMZlAwVgKZc5OyZn3GwCoOS0n5GWWOJRd0hofzKBCMtoOfbL4HO2AQzBxtTI9JrdGa3Q4KDO8Jl69YZxp6_awCsYOP1_fbYxsfewTv_MBe39OTrTsPF781Sl5vlus5g_p8un-cT5bpqooIKRYcslKVVHFZcF1IysuMdc1VFq3gDFUKV5gFVuNqkSmcA31GiFXVK5bXkzJ1eHu6Oz7Fn0QvfEKu04OaLdeUMaLnOdNzmKUHqLKWe8dajE600u3ExTEXqTYiChS7EUK4CKKjMzNgcH4w4dBJ7wy0QS2xqEKorXmH_oXWQZ-1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793292827</pqid></control><display><type>article</type><title>A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems</title><source>Elsevier</source><creator>Asante-Asamani, E.O. ; Khaliq, A.Q.M. ; Wade, B.A.</creator><creatorcontrib>Asante-Asamani, E.O. ; Khaliq, A.Q.M. ; Wade, B.A.</creatorcontrib><description>A second order Exponential Time Differencing (ETD) method for reaction–diffusion systems which uses a real distinct poles discretization method for the underlying matrix exponentials is developed. The method is established to be stable and second order convergent. It is demonstrated to be robust for problems involving non-smooth initial and boundary conditions and steep solution gradients. We discuss several advantages over competing second order ETD schemes.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2015.09.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Boundary conditions ; Computation ; Discretization ; Exponential Time Differencing ; Mathematical analysis ; Mathematical models ; Poles ; Reaction–diffusion equations ; Semilinear parabolic problems</subject><ispartof>Journal of computational and applied mathematics, 2016-06, Vol.299, p.24-34</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93</citedby><cites>FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Asante-Asamani, E.O.</creatorcontrib><creatorcontrib>Khaliq, A.Q.M.</creatorcontrib><creatorcontrib>Wade, B.A.</creatorcontrib><title>A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems</title><title>Journal of computational and applied mathematics</title><description>A second order Exponential Time Differencing (ETD) method for reaction–diffusion systems which uses a real distinct poles discretization method for the underlying matrix exponentials is developed. The method is established to be stable and second order convergent. It is demonstrated to be robust for problems involving non-smooth initial and boundary conditions and steep solution gradients. We discuss several advantages over competing second order ETD schemes.</description><subject>Boundary conditions</subject><subject>Computation</subject><subject>Discretization</subject><subject>Exponential Time Differencing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Poles</subject><subject>Reaction–diffusion equations</subject><subject>Semilinear parabolic problems</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQxy0EEqXwAGwZWRLO-XIspqqUD6kSS5kYLNc5g6skDraL6MY78IY8Ca7KzHSnu__vpPsRckkho0Dr602mZJ_lQKsMeAaUHZEJbRhPKWPNMZlAwVgKZc5OyZn3GwCoOS0n5GWWOJRd0hofzKBCMtoOfbL4HO2AQzBxtTI9JrdGa3Q4KDO8Jl69YZxp6_awCsYOP1_fbYxsfewTv_MBe39OTrTsPF781Sl5vlus5g_p8un-cT5bpqooIKRYcslKVVHFZcF1IysuMdc1VFq3gDFUKV5gFVuNqkSmcA31GiFXVK5bXkzJ1eHu6Oz7Fn0QvfEKu04OaLdeUMaLnOdNzmKUHqLKWe8dajE600u3ExTEXqTYiChS7EUK4CKKjMzNgcH4w4dBJ7wy0QS2xqEKorXmH_oXWQZ-1w</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Asante-Asamani, E.O.</creator><creator>Khaliq, A.Q.M.</creator><creator>Wade, B.A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201606</creationdate><title>A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems</title><author>Asante-Asamani, E.O. ; Khaliq, A.Q.M. ; Wade, B.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary conditions</topic><topic>Computation</topic><topic>Discretization</topic><topic>Exponential Time Differencing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Poles</topic><topic>Reaction–diffusion equations</topic><topic>Semilinear parabolic problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asante-Asamani, E.O.</creatorcontrib><creatorcontrib>Khaliq, A.Q.M.</creatorcontrib><creatorcontrib>Wade, B.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asante-Asamani, E.O.</au><au>Khaliq, A.Q.M.</au><au>Wade, B.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-06</date><risdate>2016</risdate><volume>299</volume><spage>24</spage><epage>34</epage><pages>24-34</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>A second order Exponential Time Differencing (ETD) method for reaction–diffusion systems which uses a real distinct poles discretization method for the underlying matrix exponentials is developed. The method is established to be stable and second order convergent. It is demonstrated to be robust for problems involving non-smooth initial and boundary conditions and steep solution gradients. We discuss several advantages over competing second order ETD schemes.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2015.09.017</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2016-06, Vol.299, p.24-34 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793292827 |
source | Elsevier |
subjects | Boundary conditions Computation Discretization Exponential Time Differencing Mathematical analysis Mathematical models Poles Reaction–diffusion equations Semilinear parabolic problems |
title | A real distinct poles Exponential Time Differencing scheme for reaction–diffusion systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20real%20distinct%20poles%20Exponential%20Time%20Differencing%20scheme%20for%20reaction%E2%80%93diffusion%20systems&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Asante-Asamani,%20E.O.&rft.date=2016-06&rft.volume=299&rft.spage=24&rft.epage=34&rft.pages=24-34&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2015.09.017&rft_dat=%3Cproquest_cross%3E1793292827%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-e49a74c51c9a39f8a59ae2f605ffd0ec335c93e50ecfec4e7ceb06be02c1abd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1793292827&rft_id=info:pmid/&rfr_iscdi=true |