Loading…

Application of space–time duality to ultrahigh-speed optical signal processing

Manipulation and characterization of information using ultrafast optical signals is critical for numerous applications in telecommunications, biology, quantum information science, spectroscopy, and atomic and molecular physics. Femtosecond pulsed laser sources are available over a wide range of wave...

Full description

Saved in:
Bibliographic Details
Published in:Advances in optics and photonics 2013-09, Vol.5 (3), p.274-317
Main Authors: Salem, Reza, Foster, Mark A., Gaeta, Alexander L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Manipulation and characterization of information using ultrafast optical signals is critical for numerous applications in telecommunications, biology, quantum information science, spectroscopy, and atomic and molecular physics. Femtosecond pulsed laser sources are available over a wide range of wavelengths and repetition rates, which enable the generation, transmission, and characterization of information at bandwidths beyond 1 THz. In this article, we review the concept of space-time duality as a system design tool for ultrafast optical processing and characterization. The combination of this design framework with recent advances in nonlinear optical devices enables the realization of highly complex signal processing systems that can generate, characterize, and manipulate arbitrary and non-repetitive optical waveforms at unprecedented processing speeds.
ISSN:1943-8206
1943-8206
DOI:10.1364/AOP.5.000274