Loading…
A Neighborhood-Impact Based Community Detection Algorithm via Discrete PSO
The paper addresses particle swarm optimization (PSO) into community detection problem, and an algorithm based on new label strategy is proposed. In contrast with other label propagation strategies, the main contribution of this paper is to design the definition of the impact of node and take it int...
Saved in:
Published in: | Mathematical problems in engineering 2016-01, Vol.2016 (2016), p.1-15 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-bc91f770dcdcec7d39b58dbaf9ca6c89c16dc2ebe0baa9bdc5aa6147a9b043403 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-bc91f770dcdcec7d39b58dbaf9ca6c89c16dc2ebe0baa9bdc5aa6147a9b043403 |
container_end_page | 15 |
container_issue | 2016 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2016 |
creator | Zhou, Dongqing Wang, Xing |
description | The paper addresses particle swarm optimization (PSO) into community detection problem, and an algorithm based on new label strategy is proposed. In contrast with other label propagation strategies, the main contribution of this paper is to design the definition of the impact of node and take it into use. Special initialization and update approaches based on it are designed in order to make full use of it. Experiments on synthetic and real-life networks show the effectiveness of proposed strategy. Furthermore, this strategy is extended to signed networks, and the corresponding objective function which is called modularity density is modified to be used in signed networks. Experiments on real-life networks also demonstrate that it is an efficacious way to solve community detection problem. |
doi_str_mv | 10.1155/2016/3790590 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793296666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3938301311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-bc91f770dcdcec7d39b58dbaf9ca6c89c16dc2ebe0baa9bdc5aa6147a9b043403</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AiCs7pzbMEvAhazWuatjnOzR-T4QQVvJU0SdeMtZlJq-y_N6MDwYvv8h7kw-PlGwSngK8BKL2JMCQ3JGWYMrwXDIAmJKQQp_t-xlEcQkQ-DoMj55YYR0AhGwRPI_Ss9KIqjK2MkeG0XnPRolvulERjU9ddo9sNmqhWiVabBo1WC2N1W9XoS3M00U5Y_4ZeXufHwUHJV06d7PoweL-_exs_hrP5w3Q8moWCMNKGhWBQpimWQgolUklYQTNZ8JIJnoiMCUikiFShcME5K6SgnCf-E37GMYkxGQYX_d61NZ-dcm1e-yvUasUbZTqXQ8pIxBJfnp7_oUvT2cZf55VfiiHOwKurXglrnLOqzNdW19xucsD5Nth8G2y-C9bzy55XupH8W_-nz3qtvFEl_9UAEc4o-QH8yIGP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761401481</pqid></control><display><type>article</type><title>A Neighborhood-Impact Based Community Detection Algorithm via Discrete PSO</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Zhou, Dongqing ; Wang, Xing</creator><contributor>Aloise, Daniel</contributor><creatorcontrib>Zhou, Dongqing ; Wang, Xing ; Aloise, Daniel</creatorcontrib><description>The paper addresses particle swarm optimization (PSO) into community detection problem, and an algorithm based on new label strategy is proposed. In contrast with other label propagation strategies, the main contribution of this paper is to design the definition of the impact of node and take it into use. Special initialization and update approaches based on it are designed in order to make full use of it. Experiments on synthetic and real-life networks show the effectiveness of proposed strategy. Furthermore, this strategy is extended to signed networks, and the corresponding objective function which is called modularity density is modified to be used in signed networks. Experiments on real-life networks also demonstrate that it is an efficacious way to solve community detection problem.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2016/3790590</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Clustering ; Communities ; Computer science ; Density ; Labels ; Mathematical analysis ; Methods ; Modularity ; Networks ; Optimization ; Particle swarm optimization ; Strategy ; Studies ; Swarm intelligence</subject><ispartof>Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-15</ispartof><rights>Copyright © 2016 Dongqing Zhou and Xing Wang.</rights><rights>Copyright © 2016 Dongqing Zhou and Xing Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-bc91f770dcdcec7d39b58dbaf9ca6c89c16dc2ebe0baa9bdc5aa6147a9b043403</citedby><cites>FETCH-LOGICAL-c393t-bc91f770dcdcec7d39b58dbaf9ca6c89c16dc2ebe0baa9bdc5aa6147a9b043403</cites><orcidid>0000-0003-0842-2948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1761401481/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1761401481?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Aloise, Daniel</contributor><creatorcontrib>Zhou, Dongqing</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><title>A Neighborhood-Impact Based Community Detection Algorithm via Discrete PSO</title><title>Mathematical problems in engineering</title><description>The paper addresses particle swarm optimization (PSO) into community detection problem, and an algorithm based on new label strategy is proposed. In contrast with other label propagation strategies, the main contribution of this paper is to design the definition of the impact of node and take it into use. Special initialization and update approaches based on it are designed in order to make full use of it. Experiments on synthetic and real-life networks show the effectiveness of proposed strategy. Furthermore, this strategy is extended to signed networks, and the corresponding objective function which is called modularity density is modified to be used in signed networks. Experiments on real-life networks also demonstrate that it is an efficacious way to solve community detection problem.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Communities</subject><subject>Computer science</subject><subject>Density</subject><subject>Labels</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Modularity</subject><subject>Networks</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Strategy</subject><subject>Studies</subject><subject>Swarm intelligence</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0M9LwzAUB_AiCs7pzbMEvAhazWuatjnOzR-T4QQVvJU0SdeMtZlJq-y_N6MDwYvv8h7kw-PlGwSngK8BKL2JMCQ3JGWYMrwXDIAmJKQQp_t-xlEcQkQ-DoMj55YYR0AhGwRPI_Ss9KIqjK2MkeG0XnPRolvulERjU9ddo9sNmqhWiVabBo1WC2N1W9XoS3M00U5Y_4ZeXufHwUHJV06d7PoweL-_exs_hrP5w3Q8moWCMNKGhWBQpimWQgolUklYQTNZ8JIJnoiMCUikiFShcME5K6SgnCf-E37GMYkxGQYX_d61NZ-dcm1e-yvUasUbZTqXQ8pIxBJfnp7_oUvT2cZf55VfiiHOwKurXglrnLOqzNdW19xucsD5Nth8G2y-C9bzy55XupH8W_-nz3qtvFEl_9UAEc4o-QH8yIGP</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Zhou, Dongqing</creator><creator>Wang, Xing</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0842-2948</orcidid></search><sort><creationdate>20160101</creationdate><title>A Neighborhood-Impact Based Community Detection Algorithm via Discrete PSO</title><author>Zhou, Dongqing ; Wang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-bc91f770dcdcec7d39b58dbaf9ca6c89c16dc2ebe0baa9bdc5aa6147a9b043403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Communities</topic><topic>Computer science</topic><topic>Density</topic><topic>Labels</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Modularity</topic><topic>Networks</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Strategy</topic><topic>Studies</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Dongqing</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Dongqing</au><au>Wang, Xing</au><au>Aloise, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Neighborhood-Impact Based Community Detection Algorithm via Discrete PSO</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The paper addresses particle swarm optimization (PSO) into community detection problem, and an algorithm based on new label strategy is proposed. In contrast with other label propagation strategies, the main contribution of this paper is to design the definition of the impact of node and take it into use. Special initialization and update approaches based on it are designed in order to make full use of it. Experiments on synthetic and real-life networks show the effectiveness of proposed strategy. Furthermore, this strategy is extended to signed networks, and the corresponding objective function which is called modularity density is modified to be used in signed networks. Experiments on real-life networks also demonstrate that it is an efficacious way to solve community detection problem.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/3790590</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0842-2948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-15 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793296666 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Algorithms Clustering Communities Computer science Density Labels Mathematical analysis Methods Modularity Networks Optimization Particle swarm optimization Strategy Studies Swarm intelligence |
title | A Neighborhood-Impact Based Community Detection Algorithm via Discrete PSO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Neighborhood-Impact%20Based%20Community%20Detection%20Algorithm%20via%20Discrete%20PSO&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhou,%20Dongqing&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2016/3790590&rft_dat=%3Cproquest_cross%3E3938301311%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-bc91f770dcdcec7d39b58dbaf9ca6c89c16dc2ebe0baa9bdc5aa6147a9b043403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1761401481&rft_id=info:pmid/&rfr_iscdi=true |