Loading…
The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes
Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantif...
Saved in:
Published in: | Journal of the American Society for Mass Spectrometry 2016-07, Vol.27 (7), p.1186-1196 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-2d7b1087745521c790e69ca6d6fba2cef8c39743f746397ac3a0ff73530c0beb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-2d7b1087745521c790e69ca6d6fba2cef8c39743f746397ac3a0ff73530c0beb3 |
container_end_page | 1196 |
container_issue | 7 |
container_start_page | 1186 |
container_title | Journal of the American Society for Mass Spectrometry |
container_volume | 27 |
creator | Hari, Yvonne Dugovič, Branislav Istrate, Alena Fignolé, Annabel Leumann, Christian J. Schürch, Stefan |
description | Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.
Graphical Abstract
ᅟ |
doi_str_mv | 10.1007/s13361-016-1391-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1795864219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968048390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-2d7b1087745521c790e69ca6d6fba2cef8c39743f746397ac3a0ff73530c0beb3</originalsourceid><addsrcrecordid>eNp1kc1O3DAUhS0EKjDtA7BBkdh04_beOInjJRqmQ6UpIHW6thzHBqNMPMQO6rx9PT-tUCVWvrrnO8eWDyEXCF8QgH8NyFiFFLCiyARSdkTOsOaCIubsOM1QFBQYlKfkPIRnAOQg-AdymnOoAaA8I4_LJ5NNfR8H14zR-T7zNotpd62je1W7zSypfr3Jot8pcxXow5MKJvsZVeM6Fzdb0w_fOutMm92NujNOpwTXZjfjujO_TfhITqzqgvl0OCfk17fZcnpLF_fz79PrBdWM55HmLW8Qas6LssxRcwGmElpVbWUblWtja80EL5jlRZUGpZkCazkrGWhoTMMm5PM-dz34l9GEKFcuaNN1qjd-DBK5KOuqyFEk9Oo_9NmPQ59eJ1FUNRQ1E5Ao3FN68CEMxsr14FZq2EgEuW1B7luQqQW5bUGy5Lk8JI_NyrT_HH-_PQH5HghJ6h_N8Obqd1P_ACszkRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968048390</pqid></control><display><type>article</type><title>The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hari, Yvonne ; Dugovič, Branislav ; Istrate, Alena ; Fignolé, Annabel ; Leumann, Christian J. ; Schürch, Stefan</creator><creatorcontrib>Hari, Yvonne ; Dugovič, Branislav ; Istrate, Alena ; Fignolé, Annabel ; Leumann, Christian J. ; Schürch, Stefan</creatorcontrib><description>Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.
Graphical Abstract
ᅟ</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-016-1391-3</identifier><identifier>PMID: 27080005</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Analytical Chemistry ; Bioinformatics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Deoxyribonucleic acid ; DNA ; Enthalpy ; Entropy ; Entropy of activation ; Fragmentation ; Mass spectrometry ; Muscular dystrophy ; Oligonucleotides ; Organic Chemistry ; Phase stability ; Proteomics ; Reaction kinetics ; Research Article ; Ribonucleic acid ; RNA ; Selectivity</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2016-07, Vol.27 (7), p.1186-1196</ispartof><rights>American Society for Mass Spectrometry 2016</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-2d7b1087745521c790e69ca6d6fba2cef8c39743f746397ac3a0ff73530c0beb3</citedby><cites>FETCH-LOGICAL-c372t-2d7b1087745521c790e69ca6d6fba2cef8c39743f746397ac3a0ff73530c0beb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27080005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hari, Yvonne</creatorcontrib><creatorcontrib>Dugovič, Branislav</creatorcontrib><creatorcontrib>Istrate, Alena</creatorcontrib><creatorcontrib>Fignolé, Annabel</creatorcontrib><creatorcontrib>Leumann, Christian J.</creatorcontrib><creatorcontrib>Schürch, Stefan</creatorcontrib><title>The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.
Graphical Abstract
ᅟ</description><subject>Activation energy</subject><subject>Analytical Chemistry</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Entropy of activation</subject><subject>Fragmentation</subject><subject>Mass spectrometry</subject><subject>Muscular dystrophy</subject><subject>Oligonucleotides</subject><subject>Organic Chemistry</subject><subject>Phase stability</subject><subject>Proteomics</subject><subject>Reaction kinetics</subject><subject>Research Article</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Selectivity</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kc1O3DAUhS0EKjDtA7BBkdh04_beOInjJRqmQ6UpIHW6thzHBqNMPMQO6rx9PT-tUCVWvrrnO8eWDyEXCF8QgH8NyFiFFLCiyARSdkTOsOaCIubsOM1QFBQYlKfkPIRnAOQg-AdymnOoAaA8I4_LJ5NNfR8H14zR-T7zNotpd62je1W7zSypfr3Jot8pcxXow5MKJvsZVeM6Fzdb0w_fOutMm92NujNOpwTXZjfjujO_TfhITqzqgvl0OCfk17fZcnpLF_fz79PrBdWM55HmLW8Qas6LssxRcwGmElpVbWUblWtja80EL5jlRZUGpZkCazkrGWhoTMMm5PM-dz34l9GEKFcuaNN1qjd-DBK5KOuqyFEk9Oo_9NmPQ59eJ1FUNRQ1E5Ao3FN68CEMxsr14FZq2EgEuW1B7luQqQW5bUGy5Lk8JI_NyrT_HH-_PQH5HghJ6h_N8Obqd1P_ACszkRQ</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Hari, Yvonne</creator><creator>Dugovič, Branislav</creator><creator>Istrate, Alena</creator><creator>Fignolé, Annabel</creator><creator>Leumann, Christian J.</creator><creator>Schürch, Stefan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20160701</creationdate><title>The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes</title><author>Hari, Yvonne ; Dugovič, Branislav ; Istrate, Alena ; Fignolé, Annabel ; Leumann, Christian J. ; Schürch, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-2d7b1087745521c790e69ca6d6fba2cef8c39743f746397ac3a0ff73530c0beb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation energy</topic><topic>Analytical Chemistry</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Entropy of activation</topic><topic>Fragmentation</topic><topic>Mass spectrometry</topic><topic>Muscular dystrophy</topic><topic>Oligonucleotides</topic><topic>Organic Chemistry</topic><topic>Phase stability</topic><topic>Proteomics</topic><topic>Reaction kinetics</topic><topic>Research Article</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hari, Yvonne</creatorcontrib><creatorcontrib>Dugovič, Branislav</creatorcontrib><creatorcontrib>Istrate, Alena</creatorcontrib><creatorcontrib>Fignolé, Annabel</creatorcontrib><creatorcontrib>Leumann, Christian J.</creatorcontrib><creatorcontrib>Schürch, Stefan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hari, Yvonne</au><au>Dugovič, Branislav</au><au>Istrate, Alena</au><au>Fignolé, Annabel</au><au>Leumann, Christian J.</au><au>Schürch, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J. Am. Soc. Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>27</volume><issue>7</issue><spage>1186</spage><epage>1196</epage><pages>1186-1196</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.
Graphical Abstract
ᅟ</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27080005</pmid><doi>10.1007/s13361-016-1391-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-0305 |
ispartof | Journal of the American Society for Mass Spectrometry, 2016-07, Vol.27 (7), p.1186-1196 |
issn | 1044-0305 1879-1123 |
language | eng |
recordid | cdi_proquest_miscellaneous_1795864219 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Activation energy Analytical Chemistry Bioinformatics Biotechnology Chemistry Chemistry and Materials Science Deoxyribonucleic acid DNA Enthalpy Entropy Entropy of activation Fragmentation Mass spectrometry Muscular dystrophy Oligonucleotides Organic Chemistry Phase stability Proteomics Reaction kinetics Research Article Ribonucleic acid RNA Selectivity |
title | The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Contribution%20of%20the%20Activation%20Entropy%20to%20the%20Gas-Phase%20Stability%20of%20Modified%20Nucleic%20Acid%20Duplexes&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Hari,%20Yvonne&rft.date=2016-07-01&rft.volume=27&rft.issue=7&rft.spage=1186&rft.epage=1196&rft.pages=1186-1196&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-016-1391-3&rft_dat=%3Cproquest_cross%3E1968048390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-2d7b1087745521c790e69ca6d6fba2cef8c39743f746397ac3a0ff73530c0beb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1968048390&rft_id=info:pmid/27080005&rfr_iscdi=true |