Loading…
A pharmacological characterization of GABA, THIP and DS2 at binary α4β3 and β3δ receptors: GABA activates β3δ receptors via the β3(+)δ(-) interface
Abstract There is growing evidence that GABA (γ-aminobutyric acid) can activate GABAA receptors (GABAA Rs) in the absence of an α subunit. In this study, we compared the pharmacology of homomeric and binary α4, β3 or δ subunits with ternary α4β3δ to identify subunit interfaces that contribute to the...
Saved in:
Published in: | Brain research 2016-08, Vol.1644, p.222-230 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-977cbd7bec9247a354b76f5c7bc7125824933d3705c395df84aaffa8f9912e583 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-977cbd7bec9247a354b76f5c7bc7125824933d3705c395df84aaffa8f9912e583 |
container_end_page | 230 |
container_issue | |
container_start_page | 222 |
container_title | Brain research |
container_volume | 1644 |
creator | Lee, HJ Absalom, N.L Hanrahan, J.R van Nieuwenhuijzen, P Ahring, P.K Chebib, M |
description | Abstract There is growing evidence that GABA (γ-aminobutyric acid) can activate GABAA receptors (GABAA Rs) in the absence of an α subunit. In this study, we compared the pharmacology of homomeric and binary α4, β3 or δ subunits with ternary α4β3δ to identify subunit interfaces that contribute to the pharmacology of GABA, THIP, and DS2, and the antagonists, Zn2+ , gabazine and bicuculline. β3δ receptors form functional GABA-gated channels when expressed in Xenopus oocytes with a pharmacology that differs to homomeric β3, binary α4β3 and ternary α4β3δ receptors. GABA had similar potency at α4β3 and β3δ receptors (25 µM and 26 µM, respectively) but differed at α4β3δ receptors where GABA exhibited a biphasic concentration-response (EC50 (1) = 12.6 nM; EC50 (2) = 6.3 μM). THIP activated β3δ receptors (EC50 = 456 μM) but was a more potent activator of α4β3 (EC50 = 27 μM) and α4β3δ receptors (EC50 (1) = 27.5 nM; EC50 (2) = 29.5 μΜ), indicating that the α4 subunit significantly contribute to its potency. The δ-preferring modulator, DS2 had marginal or no effect at β3δ and α4β3 receptors, indicating a role for both the α4 and δ subunits for its potency. Gabazine inhibited GABA-elicited currents at β3δ receptors whereas bicuculline activated these receptors. Mutational analysis verified that GABA binds to the β3(+)δ(-) interface formed by the β3 and δ subunits. In conclusion, evaluating agents against binary GABAA Rs such as β3δ and α4β3 receptors enables identification of interfaces that may contribute to the pharmacology of the more complex ternary α4β3δ receptors. |
doi_str_mv | 10.1016/j.brainres.2016.05.019 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1796246000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0006899316303730</els_id><sourcerecordid>1796246000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-977cbd7bec9247a354b76f5c7bc7125824933d3705c395df84aaffa8f9912e583</originalsourceid><addsrcrecordid>eNqFUstu1DAUtRCIDgO_UHk5FST1I4ljFoihhbZSJZBa1pbj3FAPGXuwMyOVX-ErqPod8004nbaLblhYV_d1jnzORWifkpwSWh0u8iZo6wLEnKU8J2VOqHyGJrQWLKtYQZ6jCSGkymop-R56FeMipZxL8hLtMUFrWtJ6gv7M8epKh6U2vvc_rNE9NinXZoBgf-vBeod9h0_mn-bv8OXp2TesXYuPLxjWA26s0-Eab_8W2xt-10hxe4sDGFgNPsT3d4s4odmNHiA-7eON1Xi4grE-e3uwvZ1lB9i6xN1pA6_Ri073Ed7cxyn6_uXz5dFpdv715Oxofp6ZgvEhk0KYphUNGMkKoXlZNKLqSiMaIygra1ZIzlsuSGm4LNuuLrTuOl13UlIGZc2naLbDXQX_aw1xUEsbDfS9duDXUVEhk6DVKN8UVbtRE3yMATq1CnaZRFCUqNEYtVAPxqjRGEVKlYxJi_v3HOtmCe3j2oMTaeDjbgDSTzcWgorGgjPQ2iTXoFpv_8_x4QmE6a0bPf0J1xAXfh1c0lFRFZki6mI8j_E6aMUJF-n9A-HWuxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796246000</pqid></control><display><type>article</type><title>A pharmacological characterization of GABA, THIP and DS2 at binary α4β3 and β3δ receptors: GABA activates β3δ receptors via the β3(+)δ(-) interface</title><source>ScienceDirect Journals</source><creator>Lee, HJ ; Absalom, N.L ; Hanrahan, J.R ; van Nieuwenhuijzen, P ; Ahring, P.K ; Chebib, M</creator><creatorcontrib>Lee, HJ ; Absalom, N.L ; Hanrahan, J.R ; van Nieuwenhuijzen, P ; Ahring, P.K ; Chebib, M</creatorcontrib><description>Abstract There is growing evidence that GABA (γ-aminobutyric acid) can activate GABAA receptors (GABAA Rs) in the absence of an α subunit. In this study, we compared the pharmacology of homomeric and binary α4, β3 or δ subunits with ternary α4β3δ to identify subunit interfaces that contribute to the pharmacology of GABA, THIP, and DS2, and the antagonists, Zn2+ , gabazine and bicuculline. β3δ receptors form functional GABA-gated channels when expressed in Xenopus oocytes with a pharmacology that differs to homomeric β3, binary α4β3 and ternary α4β3δ receptors. GABA had similar potency at α4β3 and β3δ receptors (25 µM and 26 µM, respectively) but differed at α4β3δ receptors where GABA exhibited a biphasic concentration-response (EC50 (1) = 12.6 nM; EC50 (2) = 6.3 μM). THIP activated β3δ receptors (EC50 = 456 μM) but was a more potent activator of α4β3 (EC50 = 27 μM) and α4β3δ receptors (EC50 (1) = 27.5 nM; EC50 (2) = 29.5 μΜ), indicating that the α4 subunit significantly contribute to its potency. The δ-preferring modulator, DS2 had marginal or no effect at β3δ and α4β3 receptors, indicating a role for both the α4 and δ subunits for its potency. Gabazine inhibited GABA-elicited currents at β3δ receptors whereas bicuculline activated these receptors. Mutational analysis verified that GABA binds to the β3(+)δ(-) interface formed by the β3 and δ subunits. In conclusion, evaluating agents against binary GABAA Rs such as β3δ and α4β3 receptors enables identification of interfaces that may contribute to the pharmacology of the more complex ternary α4β3δ receptors.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2016.05.019</identifier><identifier>PMID: 27181518</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Benzamides - metabolism ; Benzamides - pharmacology ; DS2 ; GABA ; GABAA receptor ; gamma-Aminobutyric Acid - metabolism ; gamma-Aminobutyric Acid - pharmacology ; Imidazoles - metabolism ; Imidazoles - pharmacology ; Isoxazoles - metabolism ; Isoxazoles - pharmacology ; Mutagenesis, Site-Directed ; Mutations ; Neurology ; Oocytes - drug effects ; Oocytes - physiology ; Protein Binding ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Protein Subunits - pharmacology ; Receptors, GABA-A - genetics ; Receptors, GABA-A - metabolism ; THIP (Gaboxadol) ; Xenopus laevis ; δ Subunits</subject><ispartof>Brain research, 2016-08, Vol.1644, p.222-230</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-977cbd7bec9247a354b76f5c7bc7125824933d3705c395df84aaffa8f9912e583</citedby><cites>FETCH-LOGICAL-c423t-977cbd7bec9247a354b76f5c7bc7125824933d3705c395df84aaffa8f9912e583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27181518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, HJ</creatorcontrib><creatorcontrib>Absalom, N.L</creatorcontrib><creatorcontrib>Hanrahan, J.R</creatorcontrib><creatorcontrib>van Nieuwenhuijzen, P</creatorcontrib><creatorcontrib>Ahring, P.K</creatorcontrib><creatorcontrib>Chebib, M</creatorcontrib><title>A pharmacological characterization of GABA, THIP and DS2 at binary α4β3 and β3δ receptors: GABA activates β3δ receptors via the β3(+)δ(-) interface</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Abstract There is growing evidence that GABA (γ-aminobutyric acid) can activate GABAA receptors (GABAA Rs) in the absence of an α subunit. In this study, we compared the pharmacology of homomeric and binary α4, β3 or δ subunits with ternary α4β3δ to identify subunit interfaces that contribute to the pharmacology of GABA, THIP, and DS2, and the antagonists, Zn2+ , gabazine and bicuculline. β3δ receptors form functional GABA-gated channels when expressed in Xenopus oocytes with a pharmacology that differs to homomeric β3, binary α4β3 and ternary α4β3δ receptors. GABA had similar potency at α4β3 and β3δ receptors (25 µM and 26 µM, respectively) but differed at α4β3δ receptors where GABA exhibited a biphasic concentration-response (EC50 (1) = 12.6 nM; EC50 (2) = 6.3 μM). THIP activated β3δ receptors (EC50 = 456 μM) but was a more potent activator of α4β3 (EC50 = 27 μM) and α4β3δ receptors (EC50 (1) = 27.5 nM; EC50 (2) = 29.5 μΜ), indicating that the α4 subunit significantly contribute to its potency. The δ-preferring modulator, DS2 had marginal or no effect at β3δ and α4β3 receptors, indicating a role for both the α4 and δ subunits for its potency. Gabazine inhibited GABA-elicited currents at β3δ receptors whereas bicuculline activated these receptors. Mutational analysis verified that GABA binds to the β3(+)δ(-) interface formed by the β3 and δ subunits. In conclusion, evaluating agents against binary GABAA Rs such as β3δ and α4β3 receptors enables identification of interfaces that may contribute to the pharmacology of the more complex ternary α4β3δ receptors.</description><subject>Animals</subject><subject>Benzamides - metabolism</subject><subject>Benzamides - pharmacology</subject><subject>DS2</subject><subject>GABA</subject><subject>GABAA receptor</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>gamma-Aminobutyric Acid - pharmacology</subject><subject>Imidazoles - metabolism</subject><subject>Imidazoles - pharmacology</subject><subject>Isoxazoles - metabolism</subject><subject>Isoxazoles - pharmacology</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutations</subject><subject>Neurology</subject><subject>Oocytes - drug effects</subject><subject>Oocytes - physiology</subject><subject>Protein Binding</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Protein Subunits - pharmacology</subject><subject>Receptors, GABA-A - genetics</subject><subject>Receptors, GABA-A - metabolism</subject><subject>THIP (Gaboxadol)</subject><subject>Xenopus laevis</subject><subject>δ Subunits</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUstu1DAUtRCIDgO_UHk5FST1I4ljFoihhbZSJZBa1pbj3FAPGXuwMyOVX-ErqPod8004nbaLblhYV_d1jnzORWifkpwSWh0u8iZo6wLEnKU8J2VOqHyGJrQWLKtYQZ6jCSGkymop-R56FeMipZxL8hLtMUFrWtJ6gv7M8epKh6U2vvc_rNE9NinXZoBgf-vBeod9h0_mn-bv8OXp2TesXYuPLxjWA26s0-Eab_8W2xt-10hxe4sDGFgNPsT3d4s4odmNHiA-7eON1Xi4grE-e3uwvZ1lB9i6xN1pA6_Ri073Ed7cxyn6_uXz5dFpdv715Oxofp6ZgvEhk0KYphUNGMkKoXlZNKLqSiMaIygra1ZIzlsuSGm4LNuuLrTuOl13UlIGZc2naLbDXQX_aw1xUEsbDfS9duDXUVEhk6DVKN8UVbtRE3yMATq1CnaZRFCUqNEYtVAPxqjRGEVKlYxJi_v3HOtmCe3j2oMTaeDjbgDSTzcWgorGgjPQ2iTXoFpv_8_x4QmE6a0bPf0J1xAXfh1c0lFRFZki6mI8j_E6aMUJF-n9A-HWuxU</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Lee, HJ</creator><creator>Absalom, N.L</creator><creator>Hanrahan, J.R</creator><creator>van Nieuwenhuijzen, P</creator><creator>Ahring, P.K</creator><creator>Chebib, M</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160801</creationdate><title>A pharmacological characterization of GABA, THIP and DS2 at binary α4β3 and β3δ receptors: GABA activates β3δ receptors via the β3(+)δ(-) interface</title><author>Lee, HJ ; Absalom, N.L ; Hanrahan, J.R ; van Nieuwenhuijzen, P ; Ahring, P.K ; Chebib, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-977cbd7bec9247a354b76f5c7bc7125824933d3705c395df84aaffa8f9912e583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Benzamides - metabolism</topic><topic>Benzamides - pharmacology</topic><topic>DS2</topic><topic>GABA</topic><topic>GABAA receptor</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>gamma-Aminobutyric Acid - pharmacology</topic><topic>Imidazoles - metabolism</topic><topic>Imidazoles - pharmacology</topic><topic>Isoxazoles - metabolism</topic><topic>Isoxazoles - pharmacology</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutations</topic><topic>Neurology</topic><topic>Oocytes - drug effects</topic><topic>Oocytes - physiology</topic><topic>Protein Binding</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Protein Subunits - pharmacology</topic><topic>Receptors, GABA-A - genetics</topic><topic>Receptors, GABA-A - metabolism</topic><topic>THIP (Gaboxadol)</topic><topic>Xenopus laevis</topic><topic>δ Subunits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, HJ</creatorcontrib><creatorcontrib>Absalom, N.L</creatorcontrib><creatorcontrib>Hanrahan, J.R</creatorcontrib><creatorcontrib>van Nieuwenhuijzen, P</creatorcontrib><creatorcontrib>Ahring, P.K</creatorcontrib><creatorcontrib>Chebib, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, HJ</au><au>Absalom, N.L</au><au>Hanrahan, J.R</au><au>van Nieuwenhuijzen, P</au><au>Ahring, P.K</au><au>Chebib, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A pharmacological characterization of GABA, THIP and DS2 at binary α4β3 and β3δ receptors: GABA activates β3δ receptors via the β3(+)δ(-) interface</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>1644</volume><spage>222</spage><epage>230</epage><pages>222-230</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><abstract>Abstract There is growing evidence that GABA (γ-aminobutyric acid) can activate GABAA receptors (GABAA Rs) in the absence of an α subunit. In this study, we compared the pharmacology of homomeric and binary α4, β3 or δ subunits with ternary α4β3δ to identify subunit interfaces that contribute to the pharmacology of GABA, THIP, and DS2, and the antagonists, Zn2+ , gabazine and bicuculline. β3δ receptors form functional GABA-gated channels when expressed in Xenopus oocytes with a pharmacology that differs to homomeric β3, binary α4β3 and ternary α4β3δ receptors. GABA had similar potency at α4β3 and β3δ receptors (25 µM and 26 µM, respectively) but differed at α4β3δ receptors where GABA exhibited a biphasic concentration-response (EC50 (1) = 12.6 nM; EC50 (2) = 6.3 μM). THIP activated β3δ receptors (EC50 = 456 μM) but was a more potent activator of α4β3 (EC50 = 27 μM) and α4β3δ receptors (EC50 (1) = 27.5 nM; EC50 (2) = 29.5 μΜ), indicating that the α4 subunit significantly contribute to its potency. The δ-preferring modulator, DS2 had marginal or no effect at β3δ and α4β3 receptors, indicating a role for both the α4 and δ subunits for its potency. Gabazine inhibited GABA-elicited currents at β3δ receptors whereas bicuculline activated these receptors. Mutational analysis verified that GABA binds to the β3(+)δ(-) interface formed by the β3 and δ subunits. In conclusion, evaluating agents against binary GABAA Rs such as β3δ and α4β3 receptors enables identification of interfaces that may contribute to the pharmacology of the more complex ternary α4β3δ receptors.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27181518</pmid><doi>10.1016/j.brainres.2016.05.019</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8993 |
ispartof | Brain research, 2016-08, Vol.1644, p.222-230 |
issn | 0006-8993 1872-6240 |
language | eng |
recordid | cdi_proquest_miscellaneous_1796246000 |
source | ScienceDirect Journals |
subjects | Animals Benzamides - metabolism Benzamides - pharmacology DS2 GABA GABAA receptor gamma-Aminobutyric Acid - metabolism gamma-Aminobutyric Acid - pharmacology Imidazoles - metabolism Imidazoles - pharmacology Isoxazoles - metabolism Isoxazoles - pharmacology Mutagenesis, Site-Directed Mutations Neurology Oocytes - drug effects Oocytes - physiology Protein Binding Protein Subunits - genetics Protein Subunits - metabolism Protein Subunits - pharmacology Receptors, GABA-A - genetics Receptors, GABA-A - metabolism THIP (Gaboxadol) Xenopus laevis δ Subunits |
title | A pharmacological characterization of GABA, THIP and DS2 at binary α4β3 and β3δ receptors: GABA activates β3δ receptors via the β3(+)δ(-) interface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20pharmacological%20characterization%20of%20GABA,%20THIP%20and%20DS2%20at%20binary%20%CE%B14%CE%B23%20and%20%CE%B23%CE%B4%20receptors:%20GABA%20activates%20%CE%B23%CE%B4%20receptors%20via%20the%20%CE%B23(+)%CE%B4(-)%20interface&rft.jtitle=Brain%20research&rft.au=Lee,%20HJ&rft.date=2016-08-01&rft.volume=1644&rft.spage=222&rft.epage=230&rft.pages=222-230&rft.issn=0006-8993&rft.eissn=1872-6240&rft_id=info:doi/10.1016/j.brainres.2016.05.019&rft_dat=%3Cproquest_cross%3E1796246000%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-977cbd7bec9247a354b76f5c7bc7125824933d3705c395df84aaffa8f9912e583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1796246000&rft_id=info:pmid/27181518&rfr_iscdi=true |