Loading…

High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)

Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI t...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2016-06, Vol.8 (24), p.12162-12169
Main Authors: Bauer, Lisa M, Situ, Shu F, Griswold, Mark A, Samia, Anna Cristina S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-e59073e4c19341187927670860e173ec6f5911a71f01640ed64c318e9a2064783
cites cdi_FETCH-LOGICAL-c383t-e59073e4c19341187927670860e173ec6f5911a71f01640ed64c318e9a2064783
container_end_page 12169
container_issue 24
container_start_page 12162
container_title Nanoscale
container_volume 8
creator Bauer, Lisa M
Situ, Shu F
Griswold, Mark A
Samia, Anna Cristina S
description Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI). Metal-doping and shape anisotropy effects on MPI tracer performance suggests feasibility of high-performance magnetic hyperthermia through an MPI-guided approach (hMPI).
doi_str_mv 10.1039/c6nr01877g
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1797875208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1797875208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e59073e4c19341187927670860e173ec6f5911a71f01640ed64c318e9a2064783</originalsourceid><addsrcrecordid>eNqFkUlPwzAUhC0EoqVw4Q7ysSAFvCR2ckQVtJXKIgTnyDgvC0qcYicS_fe4dOHI6fmNP480HoTOKbmhhCe3WhhLaCxlcYCGjIQk4Fyyw_1ZhAN04twnISLhgh-jAZOMEhmyIcpmVVEGS7B5axtlNODKtga331UG2CjTLpXtKl2Dw57AjSoM-B3vZFx5qTIFDnDR-zcZLlferSvBNpXC4_LxZX51io5yVTs4284Ren-4f5vMgsXzdD65WwSax7wLIEqI5BBqmvCQ-kAJk0KSWBCgXtcijxJKlaQ5oSIkkIlQcxpDohgRoYz5CI03vkvbfvXgurSpnIa6Vgba3qU0ZlFEJeP0f1QmMpYRI2vX6w2qbeuchTxdWp_arlJK0nUB6UQ8vf4WMPXw5da3_2gg26O7H_fAxQawTu9v_xrkP8HAiHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797875208</pqid></control><display><type>article</type><title>High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Bauer, Lisa M ; Situ, Shu F ; Griswold, Mark A ; Samia, Anna Cristina S</creator><creatorcontrib>Bauer, Lisa M ; Situ, Shu F ; Griswold, Mark A ; Samia, Anna Cristina S</creatorcontrib><description>Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI). Metal-doping and shape anisotropy effects on MPI tracer performance suggests feasibility of high-performance magnetic hyperthermia through an MPI-guided approach (hMPI).</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c6nr01877g</identifier><identifier>PMID: 27210742</identifier><language>eng</language><publisher>England</publisher><subject>Absorption ; Ferric Compounds ; Hyperthermia ; Hyperthermia, Induced ; Imaging ; Iron oxides ; Magnetite ; Magnetite Nanoparticles ; Nanoparticles ; Tracers ; Zinc</subject><ispartof>Nanoscale, 2016-06, Vol.8 (24), p.12162-12169</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-e59073e4c19341187927670860e173ec6f5911a71f01640ed64c318e9a2064783</citedby><cites>FETCH-LOGICAL-c383t-e59073e4c19341187927670860e173ec6f5911a71f01640ed64c318e9a2064783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27210742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, Lisa M</creatorcontrib><creatorcontrib>Situ, Shu F</creatorcontrib><creatorcontrib>Griswold, Mark A</creatorcontrib><creatorcontrib>Samia, Anna Cristina S</creatorcontrib><title>High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI). Metal-doping and shape anisotropy effects on MPI tracer performance suggests feasibility of high-performance magnetic hyperthermia through an MPI-guided approach (hMPI).</description><subject>Absorption</subject><subject>Ferric Compounds</subject><subject>Hyperthermia</subject><subject>Hyperthermia, Induced</subject><subject>Imaging</subject><subject>Iron oxides</subject><subject>Magnetite</subject><subject>Magnetite Nanoparticles</subject><subject>Nanoparticles</subject><subject>Tracers</subject><subject>Zinc</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUlPwzAUhC0EoqVw4Q7ysSAFvCR2ckQVtJXKIgTnyDgvC0qcYicS_fe4dOHI6fmNP480HoTOKbmhhCe3WhhLaCxlcYCGjIQk4Fyyw_1ZhAN04twnISLhgh-jAZOMEhmyIcpmVVEGS7B5axtlNODKtga331UG2CjTLpXtKl2Dw57AjSoM-B3vZFx5qTIFDnDR-zcZLlferSvBNpXC4_LxZX51io5yVTs4284Ren-4f5vMgsXzdD65WwSax7wLIEqI5BBqmvCQ-kAJk0KSWBCgXtcijxJKlaQ5oSIkkIlQcxpDohgRoYz5CI03vkvbfvXgurSpnIa6Vgba3qU0ZlFEJeP0f1QmMpYRI2vX6w2qbeuchTxdWp_arlJK0nUB6UQ8vf4WMPXw5da3_2gg26O7H_fAxQawTu9v_xrkP8HAiHs</recordid><startdate>20160616</startdate><enddate>20160616</enddate><creator>Bauer, Lisa M</creator><creator>Situ, Shu F</creator><creator>Griswold, Mark A</creator><creator>Samia, Anna Cristina S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160616</creationdate><title>High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)</title><author>Bauer, Lisa M ; Situ, Shu F ; Griswold, Mark A ; Samia, Anna Cristina S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e59073e4c19341187927670860e173ec6f5911a71f01640ed64c318e9a2064783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Absorption</topic><topic>Ferric Compounds</topic><topic>Hyperthermia</topic><topic>Hyperthermia, Induced</topic><topic>Imaging</topic><topic>Iron oxides</topic><topic>Magnetite</topic><topic>Magnetite Nanoparticles</topic><topic>Nanoparticles</topic><topic>Tracers</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Lisa M</creatorcontrib><creatorcontrib>Situ, Shu F</creatorcontrib><creatorcontrib>Griswold, Mark A</creatorcontrib><creatorcontrib>Samia, Anna Cristina S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Lisa M</au><au>Situ, Shu F</au><au>Griswold, Mark A</au><au>Samia, Anna Cristina S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-06-16</date><risdate>2016</risdate><volume>8</volume><issue>24</issue><spage>12162</spage><epage>12169</epage><pages>12162-12169</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Magnetic particle imaging (MPI) is an emerging imaging modality that allows the direct and quantitative mapping of iron oxide nanoparticles. In MPI, the development of tailored iron oxide nanoparticle tracers is paramount to achieving high sensitivity and good spatial resolution. To date, most MPI tracers being developed for potential clinical applications are based on spherical undoped magnetite nanoparticles. For the first time, we report on the systematic investigation of the effects of changes in chemical composition and shape anisotropy on the MPI performance of iron oxide nanoparticle tracers. We observed a 2-fold enhancement in MPI signal through selective doping of magnetite nanoparticles with zinc. Moreover, we demonstrated focused magnetic hyperthermia heating by adapting the field gradient used in MPI. By saturating the iron oxide nanoparticles outside of a field free region (FFR) with an external static field, we can selectively heat a target region in our test sample. By comparing zinc-doped magnetite cubic nanoparticles with undoped spherical nanoparticles, we could show a 5-fold improvement in the specific absorption rate (SAR) in magnetic hyperthermia while providing good MPI signal, thereby demonstrating the potential for high-performance focused hyperthermia therapy through an MPI-guided approach (hMPI). Metal-doping and shape anisotropy effects on MPI tracer performance suggests feasibility of high-performance magnetic hyperthermia through an MPI-guided approach (hMPI).</abstract><cop>England</cop><pmid>27210742</pmid><doi>10.1039/c6nr01877g</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2016-06, Vol.8 (24), p.12162-12169
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1797875208
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Absorption
Ferric Compounds
Hyperthermia
Hyperthermia, Induced
Imaging
Iron oxides
Magnetite
Magnetite Nanoparticles
Nanoparticles
Tracers
Zinc
title High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20iron%20oxide%20nanoparticles%20for%20magnetic%20particle%20imaging%20-%20guided%20hyperthermia%20(hMPI)&rft.jtitle=Nanoscale&rft.au=Bauer,%20Lisa%20M&rft.date=2016-06-16&rft.volume=8&rft.issue=24&rft.spage=12162&rft.epage=12169&rft.pages=12162-12169&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c6nr01877g&rft_dat=%3Cproquest_cross%3E1797875208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-e59073e4c19341187927670860e173ec6f5911a71f01640ed64c318e9a2064783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1797875208&rft_id=info:pmid/27210742&rfr_iscdi=true