Loading…
Histoenzymological Characteristics of Smooth Muscle Cells in Myocardial Vessels: A Comparative Study under Conditions of Increased Left or Right Ventricular Afterload
Histoenzymological methods were used to study metabolism of smooth muscle cells of intramural myocardial arteries during experimental aortic or pulmonary artery stenosis. Aortic stenosis was accompanied by changes in smooth muscles of the left ventricle manifested by deceleration of tricarboxylic ac...
Saved in:
Published in: | Bulletin of experimental biology and medicine 2016-05, Vol.161 (1), p.7-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Histoenzymological methods were used to study metabolism of smooth muscle cells of intramural myocardial arteries during experimental aortic or pulmonary artery stenosis. Aortic stenosis was accompanied by changes in smooth muscles of the left ventricle manifested by deceleration of tricarboxylic acid cycle, inhibition of oxidation of free fatty acids and their metabolites, flux redistribution in the glycolytic cascade, and inhibition of shuttle systems and biosynthetic processes. Similar metabolic alterations were observed in vessels of the ventricular septum, but they were not revealed in vessels of the right ventricle (except glycolysis stimulation). Under conditions of pulmonary artery stenosis, histoenzymological alterations in vascular smooth muscle of both ventricles and ventricular septum were similar, which attested to acceleration of tricarboxylic acid cycle, stimulation of oxidation of the free fatty acids with their metabolites, acceleration of glycolysis, and activation of the shuttle systems and biosynthetic processes. Comparative analysis of histoenzymological alterations revealed substantial differences in the character of metabolic changes under conditions of increased left and right ventricular afterload, which can be caused by peculiarities in myocardial blood flow, severity of circulatory disorders, severity of hypoxia, and intensity of processes maintaining ionic homeostasis in vascular smooth muscles and transport across the histohematic barriers. The data attest to important metabolic role of glycolysis in vascular smooth muscles of the myocardium, especially under conditions of enhanced afterload of the right ventricle. |
---|---|
ISSN: | 0007-4888 1573-8221 |
DOI: | 10.1007/s10517-016-3332-3 |