Loading…

Geometric Trajectory Analysis of Metabolic Responses To Toxicity Can Define Treatment Specific Profiles

Metabonomics can be viewed as the process of defining multivariate metabolic trajectories that describe the systemic response of organisms to physiological perturbations through time. We have explored the hypothesis that the homothetic geometry of a metabolic trajectory, i.e., the metabolic response...

Full description

Saved in:
Bibliographic Details
Published in:Chemical research in toxicology 2004-05, Vol.17 (5), p.579-587
Main Authors: Keun, Hector C, Ebbels, Timothy M. D, Bollard, Mary E, Beckonert, Olaf, Antti, Henrik, Holmes, Elaine, Lindon, John C, Nicholson, Jeremy K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metabonomics can be viewed as the process of defining multivariate metabolic trajectories that describe the systemic response of organisms to physiological perturbations through time. We have explored the hypothesis that the homothetic geometry of a metabolic trajectory, i.e., the metabolic response irrespective of baseline values and overall magnitude, defines the mode of response of the organism to treatment and is hence the key property when considering the similarity between two sets of measurements. A modeling strategy to test for homothetic geometry, called scaled-to-maximum, aligned, and reduced trajectories (SMART) analysis, is presented that together with principal components analysis (PCA) facilitates the visualization of multivariate response similarity and hence the interpretation of metabonomic data. Several examples of the utility of this approach from toxicological studies are presented as follows:  interlaboratory variation in hydrazine response, CCl4 dose−response relationships, and interspecies comparison of bromobenzene toxicity. In each case, the homothetic trajectories hypothesis is shown to be an important concept for the successful multivariate modeling and interpretation of systemic metabolic change. Overall, geometric trajectory analysis based on a homothetic modeling strategy like SMART facilitates the amalgamation and comparison of metabonomic data sets and can improve the accuracy and precision of classification models based on metabolic profile data. Because interlaboratory variation, normal physiological variation, dose−response relationships, and interspecies differences are also key areas of concern in genomic and proteomic as well as metabonomic studies, the methods presented here may also have an impact on many other multilaboratory efforts to produce screenable “-omics” databases useful for gauging toxicity in safety assessment and drug discovery.
ISSN:0893-228X
1520-5010
DOI:10.1021/tx034212w