Loading…
Irrigation planning using Genetic Algorithms
The present study deals with the application of Genetic Algorithms(GA) for irrigation planning. The GA technique is used to evolve efficient cropping pattern for maximizing benefits for an irrigation project in India. Constraints include continuity equation, land and water requirements, crop diversi...
Saved in:
Published in: | Water resources management 2004-04, Vol.18 (2), p.163-176 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-e8309f29953fd8736ee6e9c49848684c6ee2424e10f8c7a8e83a2c52b0f57d393 |
---|---|
cites | |
container_end_page | 176 |
container_issue | 2 |
container_start_page | 163 |
container_title | Water resources management |
container_volume | 18 |
creator | Raju, K.S Kumar, D.N |
description | The present study deals with the application of Genetic Algorithms(GA) for irrigation planning. The GA technique is used to evolve efficient cropping pattern for maximizing benefits for an irrigation project in India. Constraints include continuity equation, land and water requirements, crop diversification and restrictions on storage. Penalty function approach is used to convert constrained problem into an unconstrained one. For fixing GA parameters the model is run for various values of population, generations, cross over and mutation probabilities. It is found that the appropriate parameters for number of generations, population size, crossover probability, and mutation probability are 200, 50, 0.6 and 0.01 respectively for the present study. Results obtained by GA are compared with Linear Programming solution and found to be reasonably close. GA is found to be an effective optimization tool for irrigation planning and the results obtained can be utilized for efficient planning of any irrigation system.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/B:WARM.0000024738.72486.b2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17992524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17992524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-e8309f29953fd8736ee6e9c49848684c6ee2424e10f8c7a8e83a2c52b0f57d393</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWKu_wSLoya2TSbJJemvFj0JF8AOPIU2zdWW7W5PtwX9v1hYEL-YwYeDJO--8IeSMwpACsqvJ6G389DCE7iCXTA0lcpUP57hHelRIltFcwD7pgUbIuOT0kBzF-AFAATT0yOU0hHJp27KpB-vK1nVZLweb2NU7X_u2dINxtWxC2b6v4jE5KGwV_cnu7pPX25uX6_ts9ng3vR7PMseBt5lXDHSBWgtWLJRkufe5145rlawp7lKPHLmnUCgnrUq8RSdwDoWQC6ZZn1xsddeh-dz42JpVGZ2vkj_fbKKhUmsUyP8Hea65QpXAsz_gR7MJdVrCSIEgVE4hQaMt5EITY_CFWYdyZcOXoWC6uM3EdHGb37jNT9xmjunx-W6Cjc5WRbC1K-OvgpBUIe2cnG65wjbGLkNiXp8RKEv_ITlKwb4B6E2H6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>752058610</pqid></control><display><type>article</type><title>Irrigation planning using Genetic Algorithms</title><source>ABI/INFORM Collection</source><source>Springer Link</source><creator>Raju, K.S ; Kumar, D.N</creator><creatorcontrib>Raju, K.S ; Kumar, D.N</creatorcontrib><description>The present study deals with the application of Genetic Algorithms(GA) for irrigation planning. The GA technique is used to evolve efficient cropping pattern for maximizing benefits for an irrigation project in India. Constraints include continuity equation, land and water requirements, crop diversification and restrictions on storage. Penalty function approach is used to convert constrained problem into an unconstrained one. For fixing GA parameters the model is run for various values of population, generations, cross over and mutation probabilities. It is found that the appropriate parameters for number of generations, population size, crossover probability, and mutation probability are 200, 50, 0.6 and 0.01 respectively for the present study. Results obtained by GA are compared with Linear Programming solution and found to be reasonably close. GA is found to be an effective optimization tool for irrigation planning and the results obtained can be utilized for efficient planning of any irrigation system.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1023/B:WARM.0000024738.72486.b2</identifier><identifier>CODEN: WRMAEJ</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Algorithms ; Crop diversification ; Cropping systems ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Genetic algorithms ; Hydrology. Hydrogeology ; irrigated farming ; Irrigation ; irrigation management ; irrigation requirement ; Irrigation systems ; irrigation water ; linear models ; Linear programming ; Mutation ; Population number ; Studies ; Water requirements ; Water resources</subject><ispartof>Water resources management, 2004-04, Vol.18 (2), p.163-176</ispartof><rights>2004 INIST-CNRS</rights><rights>Kluwer Academic Publishers 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-e8309f29953fd8736ee6e9c49848684c6ee2424e10f8c7a8e83a2c52b0f57d393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/752058610/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/752058610?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15718218$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Raju, K.S</creatorcontrib><creatorcontrib>Kumar, D.N</creatorcontrib><title>Irrigation planning using Genetic Algorithms</title><title>Water resources management</title><description>The present study deals with the application of Genetic Algorithms(GA) for irrigation planning. The GA technique is used to evolve efficient cropping pattern for maximizing benefits for an irrigation project in India. Constraints include continuity equation, land and water requirements, crop diversification and restrictions on storage. Penalty function approach is used to convert constrained problem into an unconstrained one. For fixing GA parameters the model is run for various values of population, generations, cross over and mutation probabilities. It is found that the appropriate parameters for number of generations, population size, crossover probability, and mutation probability are 200, 50, 0.6 and 0.01 respectively for the present study. Results obtained by GA are compared with Linear Programming solution and found to be reasonably close. GA is found to be an effective optimization tool for irrigation planning and the results obtained can be utilized for efficient planning of any irrigation system.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Crop diversification</subject><subject>Cropping systems</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithms</subject><subject>Hydrology. Hydrogeology</subject><subject>irrigated farming</subject><subject>Irrigation</subject><subject>irrigation management</subject><subject>irrigation requirement</subject><subject>Irrigation systems</subject><subject>irrigation water</subject><subject>linear models</subject><subject>Linear programming</subject><subject>Mutation</subject><subject>Population number</subject><subject>Studies</subject><subject>Water requirements</subject><subject>Water resources</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkU1LAzEQhoMoWKu_wSLoya2TSbJJemvFj0JF8AOPIU2zdWW7W5PtwX9v1hYEL-YwYeDJO--8IeSMwpACsqvJ6G389DCE7iCXTA0lcpUP57hHelRIltFcwD7pgUbIuOT0kBzF-AFAATT0yOU0hHJp27KpB-vK1nVZLweb2NU7X_u2dINxtWxC2b6v4jE5KGwV_cnu7pPX25uX6_ts9ng3vR7PMseBt5lXDHSBWgtWLJRkufe5145rlawp7lKPHLmnUCgnrUq8RSdwDoWQC6ZZn1xsddeh-dz42JpVGZ2vkj_fbKKhUmsUyP8Hea65QpXAsz_gR7MJdVrCSIEgVE4hQaMt5EITY_CFWYdyZcOXoWC6uM3EdHGb37jNT9xmjunx-W6Cjc5WRbC1K-OvgpBUIe2cnG65wjbGLkNiXp8RKEv_ITlKwb4B6E2H6Q</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Raju, K.S</creator><creator>Kumar, D.N</creator><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>H96</scope></search><sort><creationdate>20040401</creationdate><title>Irrigation planning using Genetic Algorithms</title><author>Raju, K.S ; Kumar, D.N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-e8309f29953fd8736ee6e9c49848684c6ee2424e10f8c7a8e83a2c52b0f57d393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Crop diversification</topic><topic>Cropping systems</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithms</topic><topic>Hydrology. Hydrogeology</topic><topic>irrigated farming</topic><topic>Irrigation</topic><topic>irrigation management</topic><topic>irrigation requirement</topic><topic>Irrigation systems</topic><topic>irrigation water</topic><topic>linear models</topic><topic>Linear programming</topic><topic>Mutation</topic><topic>Population number</topic><topic>Studies</topic><topic>Water requirements</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raju, K.S</creatorcontrib><creatorcontrib>Kumar, D.N</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raju, K.S</au><au>Kumar, D.N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irrigation planning using Genetic Algorithms</atitle><jtitle>Water resources management</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>18</volume><issue>2</issue><spage>163</spage><epage>176</epage><pages>163-176</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><coden>WRMAEJ</coden><abstract>The present study deals with the application of Genetic Algorithms(GA) for irrigation planning. The GA technique is used to evolve efficient cropping pattern for maximizing benefits for an irrigation project in India. Constraints include continuity equation, land and water requirements, crop diversification and restrictions on storage. Penalty function approach is used to convert constrained problem into an unconstrained one. For fixing GA parameters the model is run for various values of population, generations, cross over and mutation probabilities. It is found that the appropriate parameters for number of generations, population size, crossover probability, and mutation probability are 200, 50, 0.6 and 0.01 respectively for the present study. Results obtained by GA are compared with Linear Programming solution and found to be reasonably close. GA is found to be an effective optimization tool for irrigation planning and the results obtained can be utilized for efficient planning of any irrigation system.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/B:WARM.0000024738.72486.b2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-4741 |
ispartof | Water resources management, 2004-04, Vol.18 (2), p.163-176 |
issn | 0920-4741 1573-1650 |
language | eng |
recordid | cdi_proquest_miscellaneous_17992524 |
source | ABI/INFORM Collection; Springer Link |
subjects | Algorithms Crop diversification Cropping systems Earth sciences Earth, ocean, space Exact sciences and technology Genetic algorithms Hydrology. Hydrogeology irrigated farming Irrigation irrigation management irrigation requirement Irrigation systems irrigation water linear models Linear programming Mutation Population number Studies Water requirements Water resources |
title | Irrigation planning using Genetic Algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irrigation%20planning%20using%20Genetic%20Algorithms&rft.jtitle=Water%20resources%20management&rft.au=Raju,%20K.S&rft.date=2004-04-01&rft.volume=18&rft.issue=2&rft.spage=163&rft.epage=176&rft.pages=163-176&rft.issn=0920-4741&rft.eissn=1573-1650&rft.coden=WRMAEJ&rft_id=info:doi/10.1023/B:WARM.0000024738.72486.b2&rft_dat=%3Cproquest_cross%3E17992524%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-e8309f29953fd8736ee6e9c49848684c6ee2424e10f8c7a8e83a2c52b0f57d393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=752058610&rft_id=info:pmid/&rfr_iscdi=true |