Loading…
Broad-spectrum immunity against superantigens is elicited in mice protected from lethal shock by a superantigen antagonist peptide
Bypassing the restricted presentation of conventional antigens, superantigens trigger an excessive cellular immune response leading to toxic shock. Antagonist peptides that inhibit the induction of human Th1 cytokine gene expression by a variety of bacterial superantigens protect mice from lethal to...
Saved in:
Published in: | Immunology letters 2004-02, Vol.91 (2-3), p.141-145 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bypassing the restricted presentation of conventional antigens, superantigens trigger an excessive cellular immune response leading to toxic shock. Antagonist peptides that inhibit the induction of human Th1 cytokine gene expression by a variety of bacterial superantigens protect mice from lethal toxic shock. We show that the surviving mice rapidly develop a broad-spectrum, protective immunity against further lethal toxin challenges with the same superantigen and even with superantigen toxins that they have not encountered before. By blocking the induction of a cellular immune response leading to toxic shock, the antagonist peptide allows the superantigen to induce a vigorous humoral immune response directed against itself, resulting in anti-toxin IgM and IgG that are broadly protective. Adoptive transfer of these antibodies to naı̈ve mice rendered them resistant to lethal superantigen challenge. The appearance of these antibodies does not require immunization with an adjuvant and is not elicited by the antagonist peptide. Our results show that superantigens are potent immunogens when given the opportunity to induce a B cell response, in conditions where a deleterious Th1 response is prevented by the superantigen antagonist peptide. |
---|---|
ISSN: | 0165-2478 1879-0542 |
DOI: | 10.1016/j.imlet.2003.11.003 |