Loading…

Separation of thiophene from heptane with ionic liquids

[Display omitted] ► The ternary (liquid+liquid) equilibria in 1-butyl-1-methylpyrrolidinium-based ILs was measured. ► High selectivity and distribution ratio for the extraction of thiophene was found. ► [BMPYR][TCM] was proposed as entrainer for the separation process. ► Extraction of sulphur-compou...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical thermodynamics 2013-06, Vol.61, p.126-131
Main Authors: Domańska, Urszula, Lukoshko, Elena Vadimovna, Królikowski, Marek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] ► The ternary (liquid+liquid) equilibria in 1-butyl-1-methylpyrrolidinium-based ILs was measured. ► High selectivity and distribution ratio for the extraction of thiophene was found. ► [BMPYR][TCM] was proposed as entrainer for the separation process. ► Extraction of sulphur-compounds from alkanes was proposed. Ionic liquids (ILs) are well known novel green solvents, which can be used for removing sulfur compounds from gasoline and diesel oils. Ternary (liquid+liquid) equilibrium data are presented for mixtures of {ionic liquid (1)+thiophene (2)+heptane (3)} at T=298.15K and ambient pressure to analyze the performance of the ionic liquid (IL) in the extraction of thiophene from the alkanes. Three pyrrolidinium-based ionic liquids have been studied: 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, ([BMPYR][FAP]), 1-butyl-1-methylpyrrolidinium tetracyanoborate, [BMPYR][TCB] and 1-butyl-1-methylpyrrolidinium tricyanomethanide, [BMPYR][TCM]. The results are discussed in terms of the selectivity and distribution ratio of separation of related systems. The immiscibility in the binary liquid systems of (thiophene+heptane) with all used ILs was observed. The [TCM]− anion in comparison with [TCB]− and [FAP]− anions shows much higher selectivity and slightly lower distribution ratio for extraction of thiophene. The non-random two liquid NRTL model was used successfully to correlate the experimental tie-lines and to calculate the phase composition error in mole fraction in the ternary systems. The average root mean square deviation (RMSD) of the phase composition was 0.047. The densities of [BMPYR][TCM] in temperature range from (298.15 to 348.15)K were measured. The data presented here show that the [BMPYR][TCM] ionic liquid can be used as an alternative solvent for the separation of thiophene from the hydrocarbon stream using solvent liquid–liquid extraction at ambient conditions.
ISSN:0021-9614
1096-3626
DOI:10.1016/j.jct.2013.01.033