Loading…
Free Vibration Sloshing Analysis in Axisymmetric Baffled Containers under Low-Gravity Condition
The free vibrations analysis of liquid sloshing is carried out for arbitrary axisymmetric containers under low-gravity condition using boundary element method. A potential flow theory is used to model the flow field and the free-surface Laplace-Young equation is used to model the surface tension eff...
Saved in:
Published in: | Microgravity science and technology 2015-03, Vol.27 (2), p.97-106 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The free vibrations analysis of liquid sloshing is carried out for arbitrary axisymmetric containers under low-gravity condition using boundary element method. A potential flow theory is used to model the flow field and the free-surface Laplace-Young equation is used to model the surface tension effect. The obtained governing equations are solved using eigenanalysis techniques to determine the natural frequencies and mode shapes of the sloshing liquid. The results for a circular cylindrical container are compared to the analytical values and very good agreement is achieved for the slipping and anchored contact line assumptions. Furthermore, some baffled containers are also analysed and the effects of baffles on the sloshing frequencies under low and zero gravity conditions are investigated and some conclusions are outlined. |
---|---|
ISSN: | 0938-0108 1875-0494 |
DOI: | 10.1007/s12217-015-9414-4 |