Loading…

Integrated computational materials design for high-performance alloys

Major advances have been made over the past 30 years in the development of an integrated computational materials design (ICMD) technology. The hierarchical structure of its methods, tools, and supporting fundamental materials databases is reviewed here, with an emphasis on successful applications of...

Full description

Saved in:
Bibliographic Details
Published in:MRS bulletin 2015-12, Vol.40 (12), p.1035-1044
Main Authors: Xiong, Wei, Olson, Gregory B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93
cites cdi_FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93
container_end_page 1044
container_issue 12
container_start_page 1035
container_title MRS bulletin
container_volume 40
creator Xiong, Wei
Olson, Gregory B.
description Major advances have been made over the past 30 years in the development of an integrated computational materials design (ICMD) technology. The hierarchical structure of its methods, tools, and supporting fundamental materials databases is reviewed here, with an emphasis on successful applications of CALPHAD (calculation of phase diagrams)-based tools as an example of ICMD, expressing mechanistic understanding in quantitative form to support science-based materials engineering. Opportunities are identified for rapid expansion of CALPHAD databases, as well as a major restructuring of materials education.
doi_str_mv 10.1557/mrs.2015.273
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800436367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2015_273</cupid><sourcerecordid>3878303451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93</originalsourceid><addsrcrecordid>eNqF0MtKxDAUBuAgCo6jOx-g4MaFrTlNc1vK4GVgwI2uQ5qmnQ5tU5N2MW9vhpmFiODqhMOXH86P0C3gDCjlj70PWY6BZjknZ2gBkogUipyeowUWgqScyeISXYWww1FhThfoeT1MtvF6slViXD_Ok55aN-gu6ePOt7oLSWVD2wxJ7XyybZttOlof370ejE1017l9uEYXdZT25jSX6PPl-WP1lm7eX9erp01qaIGnlBnDZV6UVV1yqKkRtqI1wSJnUmphQWIgRSWhImBKXTATFzUGKaSmkBtJluj-mDt69zXbMKm-DcZ2nR6sm4MCgXFBGGE80rtfdOdmHw-LihMmgDNMo3o4KuNdCN7WavRtr_1eAVaHTlXsVB06VbHTyNMjD5ENjfU_Qv_22Sle96Vvq8b-8-EbM9OHxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736817605</pqid></control><display><type>article</type><title>Integrated computational materials design for high-performance alloys</title><source>Springer Link</source><creator>Xiong, Wei ; Olson, Gregory B.</creator><creatorcontrib>Xiong, Wei ; Olson, Gregory B.</creatorcontrib><description>Major advances have been made over the past 30 years in the development of an integrated computational materials design (ICMD) technology. The hierarchical structure of its methods, tools, and supporting fundamental materials databases is reviewed here, with an emphasis on successful applications of CALPHAD (calculation of phase diagrams)-based tools as an example of ICMD, expressing mechanistic understanding in quantitative form to support science-based materials engineering. Opportunities are identified for rapid expansion of CALPHAD databases, as well as a major restructuring of materials education.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2015.273</identifier><identifier>CODEN: MRSBEA</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Applied and Technical Physics ; Characterization and Evaluation of Materials ; Computation ; Computer simulation ; Copper ; Design engineering ; Enablers ; Energy Materials ; Engineering ; Genomes ; Infrastructure ; Materials Engineering ; Materials Science ; Mathematical analysis ; Mathematical models ; Nanotechnology ; Phase transformations ; Tin</subject><ispartof>MRS bulletin, 2015-12, Vol.40 (12), p.1035-1044</ispartof><rights>Copyright © Materials Research Society 2015</rights><rights>The Materials Research Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93</citedby><cites>FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Olson, Gregory B.</creatorcontrib><title>Integrated computational materials design for high-performance alloys</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Major advances have been made over the past 30 years in the development of an integrated computational materials design (ICMD) technology. The hierarchical structure of its methods, tools, and supporting fundamental materials databases is reviewed here, with an emphasis on successful applications of CALPHAD (calculation of phase diagrams)-based tools as an example of ICMD, expressing mechanistic understanding in quantitative form to support science-based materials engineering. Opportunities are identified for rapid expansion of CALPHAD databases, as well as a major restructuring of materials education.</description><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Design engineering</subject><subject>Enablers</subject><subject>Energy Materials</subject><subject>Engineering</subject><subject>Genomes</subject><subject>Infrastructure</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Phase transformations</subject><subject>Tin</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0MtKxDAUBuAgCo6jOx-g4MaFrTlNc1vK4GVgwI2uQ5qmnQ5tU5N2MW9vhpmFiODqhMOXH86P0C3gDCjlj70PWY6BZjknZ2gBkogUipyeowUWgqScyeISXYWww1FhThfoeT1MtvF6slViXD_Ok55aN-gu6ePOt7oLSWVD2wxJ7XyybZttOlof370ejE1017l9uEYXdZT25jSX6PPl-WP1lm7eX9erp01qaIGnlBnDZV6UVV1yqKkRtqI1wSJnUmphQWIgRSWhImBKXTATFzUGKaSmkBtJluj-mDt69zXbMKm-DcZ2nR6sm4MCgXFBGGE80rtfdOdmHw-LihMmgDNMo3o4KuNdCN7WavRtr_1eAVaHTlXsVB06VbHTyNMjD5ENjfU_Qv_22Sle96Vvq8b-8-EbM9OHxw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Xiong, Wei</creator><creator>Olson, Gregory B.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20151201</creationdate><title>Integrated computational materials design for high-performance alloys</title><author>Xiong, Wei ; Olson, Gregory B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Design engineering</topic><topic>Enablers</topic><topic>Energy Materials</topic><topic>Engineering</topic><topic>Genomes</topic><topic>Infrastructure</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Phase transformations</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Olson, Gregory B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Wei</au><au>Olson, Gregory B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated computational materials design for high-performance alloys</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>40</volume><issue>12</issue><spage>1035</spage><epage>1044</epage><pages>1035-1044</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><coden>MRSBEA</coden><abstract>Major advances have been made over the past 30 years in the development of an integrated computational materials design (ICMD) technology. The hierarchical structure of its methods, tools, and supporting fundamental materials databases is reviewed here, with an emphasis on successful applications of CALPHAD (calculation of phase diagrams)-based tools as an example of ICMD, expressing mechanistic understanding in quantitative form to support science-based materials engineering. Opportunities are identified for rapid expansion of CALPHAD databases, as well as a major restructuring of materials education.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2015.273</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2015-12, Vol.40 (12), p.1035-1044
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_miscellaneous_1800436367
source Springer Link
subjects Alloys
Applied and Technical Physics
Characterization and Evaluation of Materials
Computation
Computer simulation
Copper
Design engineering
Enablers
Energy Materials
Engineering
Genomes
Infrastructure
Materials Engineering
Materials Science
Mathematical analysis
Mathematical models
Nanotechnology
Phase transformations
Tin
title Integrated computational materials design for high-performance alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20computational%20materials%20design%20for%20high-performance%20alloys&rft.jtitle=MRS%20bulletin&rft.au=Xiong,%20Wei&rft.date=2015-12-01&rft.volume=40&rft.issue=12&rft.spage=1035&rft.epage=1044&rft.pages=1035-1044&rft.issn=0883-7694&rft.eissn=1938-1425&rft.coden=MRSBEA&rft_id=info:doi/10.1557/mrs.2015.273&rft_dat=%3Cproquest_cross%3E3878303451%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1736817605&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2015_273&rfr_iscdi=true