Loading…
Integrated computational materials design for high-performance alloys
Major advances have been made over the past 30 years in the development of an integrated computational materials design (ICMD) technology. The hierarchical structure of its methods, tools, and supporting fundamental materials databases is reviewed here, with an emphasis on successful applications of...
Saved in:
Published in: | MRS bulletin 2015-12, Vol.40 (12), p.1035-1044 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93 |
container_end_page | 1044 |
container_issue | 12 |
container_start_page | 1035 |
container_title | MRS bulletin |
container_volume | 40 |
creator | Xiong, Wei Olson, Gregory B. |
description | Major advances have been made over the past 30 years in the development of an integrated computational materials design (ICMD) technology. The hierarchical structure of its methods, tools, and supporting fundamental materials databases is reviewed here, with an emphasis on successful applications of CALPHAD (calculation of phase diagrams)-based tools as an example of ICMD, expressing mechanistic understanding in quantitative form to support science-based materials engineering. Opportunities are identified for rapid expansion of CALPHAD databases, as well as a major restructuring of materials education. |
doi_str_mv | 10.1557/mrs.2015.273 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800436367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2015_273</cupid><sourcerecordid>3878303451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93</originalsourceid><addsrcrecordid>eNqF0MtKxDAUBuAgCo6jOx-g4MaFrTlNc1vK4GVgwI2uQ5qmnQ5tU5N2MW9vhpmFiODqhMOXH86P0C3gDCjlj70PWY6BZjknZ2gBkogUipyeowUWgqScyeISXYWww1FhThfoeT1MtvF6slViXD_Ok55aN-gu6ePOt7oLSWVD2wxJ7XyybZttOlof370ejE1017l9uEYXdZT25jSX6PPl-WP1lm7eX9erp01qaIGnlBnDZV6UVV1yqKkRtqI1wSJnUmphQWIgRSWhImBKXTATFzUGKaSmkBtJluj-mDt69zXbMKm-DcZ2nR6sm4MCgXFBGGE80rtfdOdmHw-LihMmgDNMo3o4KuNdCN7WavRtr_1eAVaHTlXsVB06VbHTyNMjD5ENjfU_Qv_22Sle96Vvq8b-8-EbM9OHxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736817605</pqid></control><display><type>article</type><title>Integrated computational materials design for high-performance alloys</title><source>Springer Link</source><creator>Xiong, Wei ; Olson, Gregory B.</creator><creatorcontrib>Xiong, Wei ; Olson, Gregory B.</creatorcontrib><description>Major advances have been made over the past 30 years in the development of an integrated computational materials design (ICMD) technology. The hierarchical structure of its methods, tools, and supporting fundamental materials databases is reviewed here, with an emphasis on successful applications of CALPHAD (calculation of phase diagrams)-based tools as an example of ICMD, expressing mechanistic understanding in quantitative form to support science-based materials engineering. Opportunities are identified for rapid expansion of CALPHAD databases, as well as a major restructuring of materials education.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2015.273</identifier><identifier>CODEN: MRSBEA</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Applied and Technical Physics ; Characterization and Evaluation of Materials ; Computation ; Computer simulation ; Copper ; Design engineering ; Enablers ; Energy Materials ; Engineering ; Genomes ; Infrastructure ; Materials Engineering ; Materials Science ; Mathematical analysis ; Mathematical models ; Nanotechnology ; Phase transformations ; Tin</subject><ispartof>MRS bulletin, 2015-12, Vol.40 (12), p.1035-1044</ispartof><rights>Copyright © Materials Research Society 2015</rights><rights>The Materials Research Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93</citedby><cites>FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Olson, Gregory B.</creatorcontrib><title>Integrated computational materials design for high-performance alloys</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Major advances have been made over the past 30 years in the development of an integrated computational materials design (ICMD) technology. The hierarchical structure of its methods, tools, and supporting fundamental materials databases is reviewed here, with an emphasis on successful applications of CALPHAD (calculation of phase diagrams)-based tools as an example of ICMD, expressing mechanistic understanding in quantitative form to support science-based materials engineering. Opportunities are identified for rapid expansion of CALPHAD databases, as well as a major restructuring of materials education.</description><subject>Alloys</subject><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Design engineering</subject><subject>Enablers</subject><subject>Energy Materials</subject><subject>Engineering</subject><subject>Genomes</subject><subject>Infrastructure</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Phase transformations</subject><subject>Tin</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0MtKxDAUBuAgCo6jOx-g4MaFrTlNc1vK4GVgwI2uQ5qmnQ5tU5N2MW9vhpmFiODqhMOXH86P0C3gDCjlj70PWY6BZjknZ2gBkogUipyeowUWgqScyeISXYWww1FhThfoeT1MtvF6slViXD_Ok55aN-gu6ePOt7oLSWVD2wxJ7XyybZttOlof370ejE1017l9uEYXdZT25jSX6PPl-WP1lm7eX9erp01qaIGnlBnDZV6UVV1yqKkRtqI1wSJnUmphQWIgRSWhImBKXTATFzUGKaSmkBtJluj-mDt69zXbMKm-DcZ2nR6sm4MCgXFBGGE80rtfdOdmHw-LihMmgDNMo3o4KuNdCN7WavRtr_1eAVaHTlXsVB06VbHTyNMjD5ENjfU_Qv_22Sle96Vvq8b-8-EbM9OHxw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Xiong, Wei</creator><creator>Olson, Gregory B.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20151201</creationdate><title>Integrated computational materials design for high-performance alloys</title><author>Xiong, Wei ; Olson, Gregory B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Design engineering</topic><topic>Enablers</topic><topic>Energy Materials</topic><topic>Engineering</topic><topic>Genomes</topic><topic>Infrastructure</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Phase transformations</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Olson, Gregory B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Wei</au><au>Olson, Gregory B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated computational materials design for high-performance alloys</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>40</volume><issue>12</issue><spage>1035</spage><epage>1044</epage><pages>1035-1044</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><coden>MRSBEA</coden><abstract>Major advances have been made over the past 30 years in the development of an integrated computational materials design (ICMD) technology. The hierarchical structure of its methods, tools, and supporting fundamental materials databases is reviewed here, with an emphasis on successful applications of CALPHAD (calculation of phase diagrams)-based tools as an example of ICMD, expressing mechanistic understanding in quantitative form to support science-based materials engineering. Opportunities are identified for rapid expansion of CALPHAD databases, as well as a major restructuring of materials education.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2015.273</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2015-12, Vol.40 (12), p.1035-1044 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800436367 |
source | Springer Link |
subjects | Alloys Applied and Technical Physics Characterization and Evaluation of Materials Computation Computer simulation Copper Design engineering Enablers Energy Materials Engineering Genomes Infrastructure Materials Engineering Materials Science Mathematical analysis Mathematical models Nanotechnology Phase transformations Tin |
title | Integrated computational materials design for high-performance alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20computational%20materials%20design%20for%20high-performance%20alloys&rft.jtitle=MRS%20bulletin&rft.au=Xiong,%20Wei&rft.date=2015-12-01&rft.volume=40&rft.issue=12&rft.spage=1035&rft.epage=1044&rft.pages=1035-1044&rft.issn=0883-7694&rft.eissn=1938-1425&rft.coden=MRSBEA&rft_id=info:doi/10.1557/mrs.2015.273&rft_dat=%3Cproquest_cross%3E3878303451%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-6cc7924bdfb71f5c8ed5f3082699a8e190134d91d31cba46c901f01989a512c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1736817605&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2015_273&rfr_iscdi=true |